|
|
Mitigating the Power Oscillation by the Flexible Power Conditioner |
Chen Zhongwei, Zou Xudong, Duan Shanxu, Li Ye, Wei Huarong |
State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract Flywheel type flexible power conditioner(FPC) is a novel FACTS device based on the flywheel energy storage. It has power exchanging characteristics between the FPC and the connected power system, which is able to change the power system damping. It is possible to suppress the power oscillation and enhance power system dynamic angular and voltage stabilities. The model of a single machine infinite-bus power system with a FPC is established in this paper. Then, the principle of FPC on damping out power oscillation is analyzed theoretically and a power controller is designed. The simulation results with EMTDC/PSCAD show very encouraging results of the FPC. A 10 kW prototype of FPC is experimented with power system. The FPC dynamic active power control capability significantly improves the damping characteristics, and the system dynamic stability is enhanced effectively in the system.
|
Received: 01 November 2010
Published: 20 March 2014
|
|
|
|
|
[1] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [2] 余贻鑫, 李鹏. 大区电网弱互联对互联系统阻尼和动态稳定性的影响[J]. 中国电机工程学报, 2005, 25(11): 6-11. [3] 彭晓涛. 电力系统稳定控制用 SMES装置及其性能研究[D]. 武汉: 华中科技大学, 2006. [4] 王海风, 李敏, 李乃湖, 等. 利用晶闸管控制移相装置和串联补偿器镇定电力系统低频振荡分析[J]. 中国电机工程学报, 1999, 19(8): 66-71 . Wang Haifeng, Li Min, Li Naihu, et al. Analysis of the thyristor-controlled in suppressing power system low-frequency oscillations[J]. Proceedings of the CSEE, 1999, 19(8): 66-71. [5] Torrico Bascope R P, OliveiraJr D S, Branco C G C. A UPS with 110V/220V input voltage and high- frequency transformer isolation[J]. IEEE Transactions on Industry Electronics, 2008, 55(8): 2984-2996. [6] Oudalov A, Chartouni D, Ohler C. Optimizing a battery energy storage system for primary frequency control[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1259-1266. [7] Singh B, Kasal G K. Voltage and frequency controller for a three-phase four-wire autonomous wind energy conversion system[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 509-518. [8] Santoso S. On determining the relative location of switched capacitor banks[J]. IEEE Transactions on Power Delivery, 2007, 22(2): 1108-116. [9] Xie H L, Angquist L, Nee H P. Investigation of statcoms with capacitive energy storage for reduction of voltage phase jumps in weak networks[J]. IEEE Transactions on Power Systems, 2009, 24(1): 217-225. [10] Santoso S, Hansen D. Practical solutions for broadband and time-varying interharmonic problems[J]. IEEE Transactions on Power Delivery, 2007, 22(2): 1228-1234. [11] Rahman Md H, Yamashiro S. Novel distributed power generating system of PV-ECaSS using solar energy estimation[J]. IEEE Transactions on Energy Conversion, 2007, 22(2): 358-367. [12] Shi J, Tang Y J, Li Z, et al. Temperature characteristic of a conduction-cooled HTS SMES magnet[J]. IEEE Transactions on Applied Supercon- ductivity, 2009 , 19(3): 2044-2047. [13] Shi J, Tang Y J, Yang K, et al. SMES based dynamic voltage restorer for voltage fluctuations compensation[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1360-1364 [14] Ali M H, Park M, Yu I K, et al. Improvement of wind-generator stability by fuzzy logic controlled SMES[J]. IEEE Transactions on Industry Applica- tions, 2009, 45(3): 1045-1051. [15] Ali M H, Member S, Wu B. Comparison of stabilization methods for fixed speed wind generator systems[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 323-331. [16] Wang L, Chen S S, Lee W J, et al. Dynamic stability enhancement and power flow control of a hybrid wind and marine-current farm using SMES[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 626-639. [17] 文劲宇, 李刚, 程时杰, 等. 一种增强电力系统稳定性的多功能柔性功率调节器[J]. 中国电机工程学报, 2005, 25(25): 6-11. Wen Jinyu, Li Gang, Cheng Shijie, et al. A multi-functional flexiblepower conditioner for power system stabilities enhancement [J]. Proceedings of the CSEE, 2005, 25(25): 6-11. [18] 邹旭东, 刘新民, 段善旭, 等. 储能调相功率调制系统柔性功率调节器[J]. 电工技术学报, 2009, 24(6): 146-153. Zou Xudong, Liu Xinmin, Duan Shanxu, et al. Flexible power conditioner of energy storage power modulation system[J]. Transactions of China Electrotechnical Society, 2009, 24(6): 146-153. [19] 赵阳, 邹旭东, 刘新民, 等. 多功能柔性功率调节器控制技术[J]. 中国电机工程学报, 2008, 28(9): 116-121. Zhao Yang, Zou Xudong, Liu Xinmin, et al. Control technology of multi-functional flexible power conditioner [J]. Proceedings of the CSEE, 2008, 28(9): 116-121. [20] Wang H F, Swift E J. A unified model for the analysis of FACTS devices in damping power system oscillations (part I): single-maehine infinite-bus power systems[J]. IEEE Transactions on Power Delivery, 1997, 12(2): 941-946. [21] Wang H F, Swift E J. FACTS-based stabilizer designed by the phase compensation method (part II): multi-machine power systems[C]. 4th International Conference on Advances in Power System Control, Operation and Managemenr, 1997, 2: 644-649. [22] Tang Yifan, Xu Longya. A flexible active and reactive power control strategy for a variable speed constant frequency generating system[J]. IEEE Transactions on Power Electronics, 1995, 10(4): 472-478. [23] Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J]. IEE Proceedings of Electronics Power Applications, 1996, 143(3): 231-241. [24] Arantxa Tapia, Gerardo Tapia, et al. Modeling and control of a wind turbine driven doubly fed induction generator[J]. IEEE Transactions on Energy Conversion, 2003, 18(2): 194-204. [25] Mitsutoshi Yamamoto, Osamu Motoyoshi. Active and reactive power control for doubly-fed wound rotor induction generator[J]. IEEE Transactions on Power Electronics, 1991, 6(4): 624-629. |
|
|
|