|
|
Review and Expectation of Modeling Research on Electrochemical Supercapacitor |
Zhao Yang, Liang Haiquan, Zhang Yicheng |
Tongji University Shanghai 201804 China |
|
|
Abstract Electrochemical supercapacitor is also called supercapacitor for short. As a new-type energy storage device, it possesses a wide application prospect. In order to utilize the supercapacitor properly, optimize its performance and simulate the whole energy storage system, it is essential to propose a model to describe the supercapacitor’s working property accurately. In this paper, the basic working principle of supercapacitor is introduced. The various kinds of models of supercapacitor are reviewed and each model’s trait and suitable applied boundary is analyzed in details. Some experiments aiming at equivalent circuit model which is used widely in engineering are fulfilled and relevant results and model’s structure are also discussed deeply. Through analyzing the state-of-art of supercapacitor’s modeling research and existing deficiency, the development tendency and research emphasis are expected.
|
Received: 07 July 2010
Published: 20 March 2014
|
|
|
|
|
[1] Henson W. Optimal battery/ultracapacitor storage combination[J]. Journal of Power Sources, 2008, 179(1): 417-423. [2] Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. initial characterization[J]. Journal of Power Sources, 2002, 112(1): 236-246. [3] Ashtiani C, Wright R, Hunt G. Ultracapacitors for automotive applications[J]. Journal of Power Sources, 2006, 154(2): 561-566. [4] Brenna M, Foiadelli F, Tironi E, et al. Ultracapacitors application for energy saving in subway transportation systems[C]. Proceedings of the 2007 International Conference on Clean Electrical Power, 2007: 69-73. [5] Rufer A, Hotellier D, Barrade P. A supercapacitor- based energy storage substation for voltage compensation in weak transportation networks[J]. IEEE Transactions on Power Delivery, 2004, 19(2): 629-636. [6] 许爱国, 谢少军, 姚远, 等. 基于超级电容的城市轨道交通车辆再生制动能量吸收系统[J]. 电工技术学报, 2010, 25(3): 117-123. [7] Körz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electro-chimica Acta, 2000, 45(15-16): 2483-2498. [8] Burke A. Ultracapacitors: why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1): 37-50. [9] 李言俊, 张科. 系统辨识理论及应用[M]. 北京: 国防工业出版社, 2003. [10] (加) 康维 B E, 电化学超级电容器—科学原理及技术应用[M]. 陈艾, 等译. 北京: 化学工业出版社, 2005. [11] Namisnyk A M. A survey of electrochemical supercapacitor technology[D]. Sydney: Univerity of Technology, 2003. [12] Belhachemi F, Rael S, Davat B. A physical based model of power electric double-layer supercapacitors[C]. Proceedings of the World Congress on Industrial Applications of Electrical Energy and 35th IEEE-IAS Annual Meeting, 2000: 3069-3076. [13] Itagaki M, Suzuki S, Shitanda I, et al. Impedance analysis on electric double layer capacitor with transmission line model[J]. Journal of Power Sources, 2007, 164(1): 415-424. [14] Spyker R L, Nelms R M. Classical equivalent circuit parameters for a double-layer capacitor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3 I): 829-836. [15] Cultura II A B, Salaineh Z M. Performance evaluation of a supercapacitor module for energy storage applications[C]. Proceedings of the IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, 2008: 1-7. [16] Nelms R M, Cahela D R, Tatarchuk B J. Modeling double-layer capacitor behavior using ladder circuits[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 430-438. [17] Nelms R M, Cahela D R, Newsom R L, et al. A comparison of two equivalent circuits for double-layer capacitors[C]. Proceedings of the Applied Power Electronics Conference, 1999: 692-698. [18] Dougal R A, Gao L, Liu S. Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation[J]. Journal of Power Sources, 2004, 126(1-2): 250-257. [19] Zubieta L, Bonert R. Characterization of double-layer capacitors for power electronics applications[J]. IEEE Transactions on Industry Applications, 2000, 36(1): 199-205. [20] Faranda R. A new parameters identification procedure for simplified double layer capacitor two-branch model[J]. Electric Power Systems Research, 2010, 80(4): 363-371. [21] 李海东, 齐智平, 祁新春, 等. 一种超大容量双电层电容器中小功率模型及其参数识别方法[J]. 电工技术学报, 2008, 23(3): 30-35. [22] Yang W, Carletta J E, Hartley T T, et al. An ultracapacitor model derived using time-dependent current profiles[C]. Proceedings of the 2008 IEEE International 51st Midwest Symposium on Circuits and Systems, 2008: 726-729. [23] Lajnef W, Vinassa J M, Azzopardi S, et al. Ultracapacitors modeling improvement using an experimental characterization based on step and frequency responses[C]. Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004: 131-134. [24] Rafik F, Gualous H, Gallay R, et al. Frequency, thermal and voltage supercapacitor characterization and modeling[J]. Journal of Power Sources, 2007, 165(2): 928-934. [25] Bohlen O, Kowal J, Sauer D U. Ageing behaviour of electrochemical double layer capacitors. part I. Experimental study and ageing model[J]. Journal of Power Sources, 2007, 172(1): 468-475. [26] Buller S, Karden E, Kok D, et al. Modeling the dynamic behavior of supercapacitors using impedance spectroscopy[J]. IEEE Transactions on Industry Applications, 2002, 38(6): 1622-1626. [27] Guillemet P, Scudeller Y, Brousse T. Multi-level reduced-order thermal modeling of electrochemical capacitors[J]. Journal of Power Sources, 2006, 157(1): 630-640. [28] Lee D H, Kim U S, Shin C B, et al. Modelling of the thermal behaviour of an ultracapacitor for a 42V automotive electrical system[J]. Journal of Power Sources, 2008, 175(1): 664-668. [29] Bohlen O, Kowal J, Dirk U S. Ageing behaviour of electrochemical double layer capacitors. part II. lifetime simulation model for dynamic applications[J]. Journal of Power Sources, 2007, 173(1): 626-632. [30] Guillemet P, Pascot C, Scudeller Y. Compact thermal modeling of electric double-layer-capacitors[C]. Proceedings of the 14th International Workshop on Thermal Investigation of ICs and Systems, 2008: 118-122. [31] Gualous H, Bouquain D, Berthon A, et al. Experimental study of supercapacitor serial resistance and capacitance variations with temperature[J]. Journal of Power Sources, 2003, 123(1): 86-93. [32] Hammar A, Lallemand R, Coquery G, et al. Assessment of electrothermal model of supercapacitors for railway applications[C]. Proceedings of the 2005 European Conference on Power Electronics and Applications, 2005: 1-8. [33] Körz R, Hahn M, Gallay R. Temperature behavior and impedance fundamentals of supercapacitors[J]. Journal of Power Sources, 2006, 154(2): 550-555. [34] Marie Francoise J N, Gualous H, Berthon A. Supercapacitor thermal-and electrical-behaviour modelling using ANN[J]. IEE Proceedings of the Electric Power Applications, 2006, 153(2): 255-262. [35] 闫晓磊, 钟志华, 李志强, 等. HEV超级电容自适应模糊神经网络建模研究[J]. 湖南大学学报(自然科学版), 2008, 35(4): 33-36. [36] Farsi H, Gobal F. Artificial neural network simulator for supercapacitor performance prediction[J]. Computational Materials Science, 2007, 39(3): 678-683. |
|
|
|