|
|
A Maximum Power Control Method of Three-Phase Voltage Source Rectifiers Adapted to Aircraft Electric Actuator Load |
Zhang Wei1, Shang Xiaolei1, Zhou Yuanjun1, Liu Xinbo1, Han Hongwei2 |
1. Beijing University of Aeronautics and Astronautics Beijing 100191 China 2. China Special Equipment Inspection and Research Institute Beijing 100013 China |
|
|
Abstract The aircraft electric actuator is one of the most important loads of the future more electric aircraft power grid. And it features with the load characteristics of wide-range rapid varying. In this paper, a maximum power control method for the three-phase voltage source PWM rectifier is presented. The proposed control method aims to solve the problem of big output voltage dip and instability when the load current varying rapidly. The maximum power control method and its structure are presented. The characters of an aircraft electric actuator and the affect for supply source are analyzed. The proposed control method is validated by simulation. The simulation responses of the classical linear PI scheme are included for comparative study. Experiments are also done on a 10kW prototype. Simulation results and experimental results show improved performance and big capacity of the new scheme in the voltage regulating of a VSR with wide-range dynamic loads.
|
Received: 29 October 2010
Published: 07 March 2014
|
|
|
|
|
[1] Green A W, Boys J T, Gates G F. Three-phase voltage sourced reversible rectifier[J]. IEE Proceedings of Electric Power Applications, 1988, 135(6): 362-370. [2] Rosero J A, Ortega J A, Aldabas E, et al. Moving towards a more electric aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(3): 3-9. [3] Garcia A, Cusido J, Rosero J A, et al. Reliable electro-mechanical actuators in aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23(8): 19-25. [4] Emadi K, Ehsani M. Aircraft power systems: technology, state of art, and future trends[J]. IEEE AES Systems Magazine, 2000, 15(1): 28-32. [5] Lee D C, Lee G M, Lee K D. DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization[J]. IEEE Transactions on Industrial Application, 2000, 36(3): 826-833. [6] Komurcugil H, Kukrer O. Lyapunov-based control for three phase PWM AC/DC voltage-source converters[J]. IEEE Transactions on Power Electronics, 1998, 13(5): 801-813. [7] 张晓华, 张卫杰. 三相电压型PWM整流器的IDA-PB控制[J]. 电工技术学报, 2009, 24(3): 122-127. [8] 王久和, 黄立培, 杨秀媛. 三相电压型PWM整流器的无源性功率控制[J]. 中国电机工程学报, 2008, 28(21): 20-25. [9] 王久和, 李华德, 王立明. 电压型PWM整流器直接功率控制系统[J]. 中国电机工程学报, 2006, 26(18): 54-60. [10] Blasko V, Kaura V. A new mathematical model and control of a three-phase AC-DC voltage source converter[J]. IEEE Transactions on Power Electronics, 1997, 12(1): 116-123. [11] 瞿博, 吕征宇. 三相电压型PWM整流器小信号建模及其控制器设计[J]. 电工技术学报, 2010, 25(5): 103-108. [12] Lee D C. Advanced nonlinear control of three-phase PWM rectifiers[J]. IEE Proceedings of Electric Power Applications, 2000, 147(5): 361-366. [13] Cichowlas M, Kazmierkowski, M P. Comparison of current control techniques for PWM rectifiers[C]. International Symposium on Industrial Electronics, 2002, 4: 1259-1263. [14] 王兆安, 杨君, 刘进军. 谐波抑制和无功功率补偿[M]. 北京: 机械工业出版社, 1998. [15] 张崇巍, 张兴. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2003. [16] Trainer D R, Whitley C R. Electric actuation—power quality management of aerospace flight control systems[C]. International Conference on Power Electronics, Machines and Drives, 2002: 229-234. [17] Weimer J A. Electrical Power Technology for the More Electric Aircraft[C]. Digital Avionics Systems Conference, 1993: 445-450. [18] Maldonado M A, Shah N M, Cleek K J, et al. Power management and distribution system for a more electric aircraft (MADMEL)-program status[C]. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1997, 1: 274-279. [19] 董慧芬, 周元钧, 沈颂华. 双通道无刷直流电动机容错动态性能分析[J]. 中国电机工程学报, 2007, 27(21): 89-94. [20] 周元钧, 赵运坤, 葛云海. 复合式余度机电作动系统容错控制与性能分析[J]. 北京航空航天大学学报, 2008, 34(3): 285-289. |
|
|
|