|
|
LCC-MTDC Technology for Wind Farms Integration |
Chen Xia1, Lin Weixing1, Sun Haishun1, Wen Jinyu1, Li Naihu2, Yao Liangzhong3 |
1. State Key Laboratory of Advanced Electromagnetic and Technology Huazhong University of Science and Technology Wuhan 430074 China 2. ALSTOM Grid Technology Center (China) Co. Ltd Shanghai 201114 China 3. ALSTOM Grid Research & Technology Center Stafford ST174LX United Kingdom |
|
|
Abstract This paper is aimed at the application aspect of using line-commutated converter based multi-terminal HVDC (LCC-MTDC) for doubly-fed induction generator (DFIG) based wind farms integration, including the configuration and parameters design in the context of Northwest Grid (NG) in China, combining with practical requirements. The control strategies for the LCC-MTDC are conceived, considering the steady-state and transient respectively. Meanwhile various scenarios such as ac fault on rectifier and inverter sides are simulated to investigate the system performance during disturbance and verify the control strategies in PSCAD/EMTDC. It is proven that the proposed control strategy gives stable operation and is well controlled over the whole operating range.
|
Received: 02 November 2010
Published: 07 March 2014
|
|
|
|
|
[1] Wind Power Installed Capacity Statistics in China, 2009. [Online]. Available: http://www.cwea.org.cn/ main.asp. [2] Hammad A, Minghetti R, Hasler J, et al. Controls modeling and verification for the pacific intertie HVDC 4-terminal scheme[J]. IEEE Transactions on Power Delivery, 1993, 8(1): 367-375. [3] Foster S, Xu L, Fox B. Control of an LCC HVDC system for connecting large offshore wind farms with special consideration of grid fault[C]. IEEE/PES, General Meeting, 2008. [4] Bozhko S, Blasco R, Li R, et al. Control of offshore DFIG-based wind farm grid with line-commutated HVDC connection[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 71-78. [5] 舒印彪, 刘泽洪, 高理迎, 等. ±800kV 6400MW特高压直流输电工程设计[J]. 电网技术, 2006, 30(1): 1-7. [6] 杨一鸣, 曹燕明. 用合成回路进行±800kV向家坝-上海工程换流阀运行试验[J]. 高电压技术, 2010, 36(1): 281-284. [7] Xu L, Andersen B R. Grid connection of large offshore wind farms using HVDC[J]. Wind Energy, 2006, 9(2): 371-382. [8] Reeve J. Multi-terminal HVDC power systems[J]. IEEE Transactions on Power Apparatus and System, 1980, 99(2): 729-735. [9] Jiang H B, Ekstrom A. Multiterminal HVDC sytems in urban areas of large cities[J]. IEEE Transactions on Power Delivery, 1998, 22(2): 1278-1285. [10] Jovcic D. Interconnecting offshore wind farms using multiterminal VSC-based HVDC[C]. IEEE/PES, General Meeting, 2006: 1-7. [11] Xu L, Yao L Z, Sasse C. Grid integration of large DFIG based wind farms using VSC transmission[J]. IEEE Transactions on Power Systems, 2007, 22(3): 976-984. [12] Andersen B R, Xu L. Hybrid HVDC for power transmission to island network[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1884-1890. [13] Fan L, Miao Z, Osborn D. Wind farms with HVDC delivery in load frequency control[J]. IEEE Transactions on Power Systems, 2009, 24(4): 1894-1895. [14] Xiang D, Ran L, Bumby J, et al. Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 463-471. [15] Jiang H B, Ake E. Multiterminal HVDC systems in urban areas of large cities[J]. IEEE Transactions on Power Delivery, 1998 13(4): 1278-1284. [16] Sun X, Liu Z, Gao L Y, et al. Practice and innovation in the ±800kV UHVDC demonstration project[J]. Proceedings of the CSEE, 2009, 29(22): 35-45. [17] Yang F, Xu Z, Zhang J. An approach to select PI parameters of HVDC controller[C]. IEEE/PES, General Meeting, 2006. [18] Hill R, Luo F. Stability analysis of thyristor current controllers[J]. IEEE Transactions on Industry Application, 1987, 23(1): 49-56. [19] 陈谦. 多端直流输电系统的运行与控制[D]. 南京: 东南大学, 2005. [20] Zhou H, Yang G, Geng H. Grid integration of DFIG-based offshore wind farms with hybrid HVDC connection[C]. Electrical Machines and Systems, ICEMS 2008, 2008. [21] Michalke G, Hansen A D, Hartkopf T. Control of a wind park with doubly fed induction generators in support of power system stability in case of grid faults[C]. European Wind Energy Conference, 2007. [22] Poller M, Achillers S. Aggregated wind park model for analyzing power system dynamics[C]. Forth International Workshop on Large scale Integration of Wind Power and Transmission Networks, Denmark, 2003. [23] 郭金东, 赵栋利, 林资旭, 等. 兆瓦级变速恒频风力发电机控制系统[J]. 中国电机工程学报, 2007, 27(6): 1-6. Guo Jindong, Zhao Dongli, Lin Zixu, et al. Rearch of the megawatt level variable speed constant frequency wind power unit control system[J]. Proceedings of the CSEE, 2007, 27(6): 1-6. [24] Miller N W, Sanchez J J, Price W W, et al. Dynamic modeling of GE 1.5 and 3.6MW wind turbine- generators for stability simulations[C]. IEEE/PES, General Meeting, 2003. [25] Ullah N R, Thiringer T, Karlsson D. Temporary primary frequency control support by variable speed wind turbines—potential and applications[J]. IEEE Transactions on Power Systems, 2008, 21(3): 601-612. [26] Jiao L, Joos G, Abbey C. Multi-terminal DC (MTDC) Systems for wind farms powered by doubly-fed induction generators (DFIGs)[C]. Proceedings of the IEEE PESC, Germany, 2004. |
|
|
|