|
|
Power System Fault Diagnosis Based on Gradual Optimization in Consideration of Alarm Information Aberrance |
Mei Nian, Shi Dongyuan, Li Yinhong, Duan Xianzhong |
Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract Recent optimization-based fault section estimation methods for power systems can be categorized as consistency diagnostic methods or parsimonious covering diagnostic methods. The two kinds of methods may reach wrong diagnosis results in complex scenerios in which maloperation of protections and alarm aberrance exist. To overcome their drawbacks, a multi-objective gradual optimization method was built by combining the merits of the two methods. The proposed method took turns to make the consistency diagnosis based on all the alarm and the protection alarm repectively, and then the parsimonious covering diagnosis. By simple calculation of the diagnosis results, several kinds of fault section candidates are listed according to their fault probability. Case studies show that the method presented can accurately locate the faulty element in the aforementioned complex scenerios but also give a detailed evaluation of the operation of protections. To reduce the heavy calculation load caused by multiplicity of characteristic alarms, a method to construct adaptive characteristic alarms is proposed. Specefic approaches to confine and list various state vectors are provided based on the outage area, which make the diagnosis process much faster.
|
Received: 20 March 2008
Published: 17 February 2014
|
|
|
|
|
[1] U.S.-Canada Power System Outage Task Force. Final report on the August 14, 2003 blackout in the United States and Canada: causes and recommendations[OL]. http://www.nerc.com. [2] Oyama T. Fault section estimation in power systems using Boltzmann machine[C]. Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems, Japan, 1993: 3-8. [3] 文福拴, 韩祯祥. 基于模拟进化理论的电力系统的故障诊断[J]. 电工技术学报, 1994, 9(2): 57-63. [4] 文福拴, 邱家驹, 韩祯祥. 只利用断路器信息诊断电力系统故障的高级遗传算法[J]. 电工技术学报, 1996, 11(2): 58-64. [5] 文福拴, 钱源平, 韩祯祥, 等. 利用保护和断路器信息的电力系统故障诊断与不可观测的保护的状态识别的模型与Tabu搜索方法[J]. 电工技术学报, 1998, 13(5): 1-8. [6] 翁汉琍, 毛鹏, 林湘宁. 一种改进的电网故障诊断优化模型[J]. 电力系统自动化, 2007, 31(7): 66-70. [7] 张炳达, 马忠坤, 陈伟乐, 等. 基于故障群组合优化的变电站故障诊断[J]. 中国电机工程学报, 2004, 24(3): 135-139. [8] 文福拴, 韩祯祥. 计及警报信息时间特性的故障诊断模型[J]. 电力系统自动化, 1999, 23(17): 6-9. [9] 周玉兰, 王玉玲, 赵曼勇. 2004年全国电网继电保护与安全自动装置运行情况[J]. 电网技术, 2005, 29(16): 42-48. [10] 侯云鹤, 鲁丽娟, 熊信艮, 等. 改进粒子群算法及其在电力系统经济负荷分配中的应用[J]. 中国电机工程学报, 2004, 24(7): 95-100. [11] Peng Yun, Reggia J A. A connectionist model for diagnostic problem solving[J]. IEEE Trans. on Systems, Man and Cybernetics, 1989, 19(2): 285-298. [12] Peng Yun, Reggia J A. Abductive inference models for diagnostic problem-solving[M]. New York: Springer- Verlag, 1990. [13] 梅念, 石东源, 段献忠, 等. 基于开关变位信息的电网可疑故障元件集识别方法[J]. 电网技术, 2007, 31(11): 156-161. 作者简介:梅念 女, 1982年生, 博士研究生, 研究方向为人工智能在电力系统中的应用、电力系统继电保护及电力系统故障诊断。石东源 男, 1974年生, 副教授, 研究方向为信息化电力系统相关理论及支撑软件技术。 |
|
|
|