|
|
Comprehensive Research on the Photovoltaic Maximum Power Point Tracking Based on Input Parameters or Output Parameters |
Yang Shuitao1, Zhang Fan1, Ding Xinping2, Qian Zhaoming1 |
1. Zhejiang University Hangzhou 310027 China 2. Qingdao Technological University Qingdao 266520 China |
|
|
Abstract According to the different observing objects, the widely used photovoltaic maximum power point tracking (MPPT) techniques can be divided to two kinds, which are based on input parameters and output parameters respectively. To comprehensively investigate the performance of these two methods, this paper adopts the popular perturb & observe (P&O) method and develops the small-signal model of a boost MPPT converter using averaged switching method. The transfer functions from variations in the duty cycle to disturbances of the observe objects describes how system parameters influence the dynamic performance, also demonstrates the dynamic performance of each MPPT method. The investigation results are contributed to choose an appropriate MPPT control method, optimize the system parameters, perturb step of the duty cycle and P&O cycle. The theoretical analysis is verified experimentally.
|
Received: 27 November 2007
Published: 14 February 2014
|
|
|
|
|
[1] Xiao Weidong, Nathan Ozog, William G Dunford. Topology study of photovoltaic interface for maximum power point tracking[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1696-1704. [2] Nicola Femia, Giovanni Petrone, Giovanni Spagnuolo, et al. Optimization of perturb and observe maximum power point tracking method[J]. IEEE Transactions on Power Electronics, 2005, 20(4): 963-973. [3] Eftichios Koutroulis, Kostas Kalaizakis, Nicholas C Voulgaris. Development of a microcontroller-based, photovoltaic maximum power point tracking control system[J]. IEEE Transactions on Power Electronics, 2001, 16(1): 46-54. [4] Trishan Esram, Patrick L Chapman. Comparison of photovoltaic array maximum power point tracking techniques[J]. IEEE Transactions on Energy Conver- sion, 2007, 22(2): 439-449. [5] Case M J, Joubert M J, Harrison T A, et al. A novel photovoltaic array maximum power point tracker[C]. EPE- PEMC 2002, Dubrovnik, Croatia, 2002: T5-005. [6] Shmilovitz D. On the control of photovoltaic maxi- mum power point tracker via output parameters[J]. IEE Proceedings-Electric Power Applications, 2005, 15(2): 239-248. [7] Muhida R, Minwon P, Dakkak M, et al. A maximum power point tracking for photovoltaic-SPE system using a maximum current controller[J]. Solar Energy Mater. Solar Cells, 2003, 75 (3-4): 697-706. [8] 傅诚, 陈鸣, 沈玉梁, 等. 基于输出参数的最大功率点控制[J]. 电工技术学报, 2007, 22(2): 148-152. [9] 张超, 何湘宁. 短路电流结合扰动观测法在光伏发电最大功率点跟踪控制中的应用[J]. 中国电机工程学报, 2006, 26(20): 98-102. [10] Kuo YeongChau, Liang TsorngJuu, Chen JiannFuh. Novel maximum -power-point-tracking controller for photovoltaic energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2001, 48(3): 594-601. [11] Toshihiko Noguchi, Shigenori Togashi, Ryo Naka* moto. Short-current pulse-based maximumpowerpoint tracking method for multiple photo-voltaic-and- converter module system[J]. IEEE Transactions on Industrial Electronics, 2002, 49(1): 217-223. [12] Jonathan W Kimball, Philip T Krein. Digital ripple correlation control for photovoltaic applications[C]. IEEE 38th Annual Power Electronics Specialists Conference, USA, 2007: 1690-1694. [13] Trishan Esram, Jonathan W Kimball, Philip T Krein, et al. Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control[J]. IEEE Transactions on Power Electronics, 2007, 21(5): 1282-1291. [14] Robert W Erickson, Maksimovic D. Fundamental of power electronics[M]. New York: Kluwer Academic Publishers, 2001. |
|
|
|