|
|
Dynamic Stability of Power System Based on Modal Participation Factor |
Zhao Xingyong1, Zhang Xiubin2, Wang Jie2 |
1. Shanxi University Taiyuan 030013 China 2. Shanghai Jiaotong University Shanghai 200240 China |
|
|
Abstract Based on the differential algebraic equation for the dynamic analysis of power systems, the method which investigates the dynamic stability of power systems and distinguishes the instability types is presented in the paper. Firstly, the equilibrium manifold is traced by a continuation method with a prediction-correction process, and an adaptive step size control strategy considering the curvature of the manifold is introduced; Then the dynamic stability of each equilibrium point is analyzed using small disturbance analysis method considering the dynamics of components, and the state matrix of system is calculated by the numerical disturbance scheme. The modal participation factors of the state variables are used to distinguish the instability types easily. Finally, the proposed method is applied in the New England 10-generator 39-Bus power system. The simulation results checked with those obtained by time domain simulation method show that the proposed method is effective and practical.
|
Received: 24 September 2007
Published: 14 February 2014
|
|
|
|
|
[1] 周双喜, 朱凌志, 郭锡玖, 等. 电力系统电压稳定性及其控制[M]. 北京:中国电力出版社, 2004. [2] Zhang Y P, Huang W, Liu Z Q, et al. Research on the relationship of the singular point for load flow jacobian matrix and the critical point of voltage collapse[C]. Proc. of IEEE PES General meeting. San Francisco, USA, 2005: 173-185. [3] Haque M H. Determination of stead-state voltage stability limit using P-Q curves[J]. IEEE Power Eng., Rev., 2002, 22(4): 71-73. [4] 王锡凡, 方万良, 杜正春, 等. 现代电力系统分析[M]. 北京:科学出版社, 2003. [5] Prabha Kundur. Power system stability and control[M]. New York: McGraw-Hill, 2001. [6] 包黎昕, 段献忠, 陈峰, 等. SVC和TCSC提高电压稳定性作用的动态分析[J]. 电力系统自动化, 2001, 25(7): 21-24. [7] 吴涛, 王伟胜, 王建全, 等. 用计及机组动态时的潮流雅可比矩阵计算电压稳定极限[J]. 电力系统自动化, 1997, 21(4): 13-16. [8] Li Xiaolu, Bao Lixin, Duan Xianzhong. Effects of FACTS controller on small signal voltage stability[C]. IEEE Winter Meeting, Singapore, 2000. [9] Padiyar K R, Bhaskar K. Analysis of small signal voltage stability in multimachine systems using detailed and reduced formulations[J]. Electrical Power and Energy Systems, 2002, 24(8): 489-501. [10] 吴浩, 韩祯祥. 电压稳定和功角稳定关系的平衡点分析法[J]. 电力系统自动化, 2003, 27(12): 28-31. [11] Tan C W, Varghese M, Varaiya, et al. Bifurcation chaos, and voltage collapse in power systems[J]. Proceedings of the IEEE, 1995, 83(11): 1484-1496. [12] 彭志炜, 胡国根, 韩祯祥. 电力系统电压稳定与同步稳定分析[J]. 电力系统及其自动化学报, 2000, 12(1): 1-4. [13] 韩文, 韩祯祥. 电压崩溃与功角不稳的关系[J]. 电力系统自动化, 1996, 20(12): 16-19. [14] Padiyar K R, Bhaskar K. An integrated analysis of voltage and angle stability of a three node power system[J]. Electrical Power and Energy Systems, 2002, 24(8): 489-501. [15] Vournas C D, Sauer P W, Pal M A. Relationships between voltage and angle stability of power systems[J]. Electrical Power and Energy Systems, 1996, 18(8): 493-500. [16] 常永吉, 赵刚, 于继来. 电力系统动态过程的柔性自校正仿真方法[J]. 电力系统自动化, 2006, 30(10): 22-27. [17] 张旭, 沈沉, 梅生伟, 等. 小干扰稳定特征矢量和相关因子的分布式算法[J]. 电力系统自动化, 2007, 31(14): 7-11. [18] 曹国云, 陈陈. 间接法计算非线性电压稳定模型的平衡点分岔值[J]. 电力系统自动化, 1999, 23(21): 17-20. [19] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京:清华大学出版社, 2002. |
|
|
|