|
|
A Fault Line Detection Method for Indirectly Grounding Power System Based on Quantum Neural Network and Evidence Fusion |
Zhang Haiping, He Zhengyou, Zhang Jun |
Southwest Jiaotong University Chengdu 610031 China |
|
|
Abstract A new fault diagnosis model based on intergrated quantum neural networks (QNNs) and dempster-shafer (DS) evidence theory to detect the fault line for indirectly grounding power system is proposed. According to fast fourier transform (FFT) and wavelet packet transform (WPT) algorithms, the fault features extracted from zero sequence current are used to train the quantum neural networks, then DS evidence theory is used for global diagnosis to gain a unified line selection result from the outputs of the networks. The simulation results indicate that the model has strong adaptability to the fault line detection for indirectly grounding system, and the process is not sensitive to earth mode, inception angles and transition resistance. The issues are solved, which are low accuracy of the detecting process with single criterion, slow convergence speed and long diagnosis time of the high dimension inputs neural netwok.
|
Received: 04 August 2008
Published: 18 February 2014
|
|
|
|
|
[1] 董新洲, 毕见广. 配电线路暂态行波的分析和接地选线研究[J]. 中国电机工程学报, 2005, 25(4): 1-6. [2] 薛永端, 徐丙垠, 冯祖仁, 等. 小电流接地故障暂态方向保护原理研究[J]. 中国电机工程学报, 2003, 23(7): 51-56. [3] 贾清泉, 刘连光, 杨以涵, 等. 应用小波检测故障突变特性实现配电网小电流故障选线保护[J]. 中国电机工程学报, 2001, 21(10): 78-82. [4] 王耀南, 霍百林, 王辉, 等. 基于小波包的小电流接地系统故障选线的新判据[J]. 中国电机工程学报, 2004, 24(6): 54-58. [5] 苏战涛, 吕艳萍. 一种基于小波包分析的小电流接地电网单相接地故障选线的新方法[J]. 电网技术, 2004, 28(12): 30-33. [6] 戴剑锋, 张艳霞. 基于多频带分析的自适应配电网故障选线研究[J]. 中国电机工程学报, 2003, 23(5): 44-47. [7] 贾清泉, 杨奇逊, 杨以涵, 等. 基于故障测度概念与证据理论的配电网单相接地故障多判据融合[J]. 中国电机工程学报, 2003, 23(12): 6-11. [8] 房鑫炎, 郁惟铺, 庄伟. 模糊神经网络在小电流接地系统选线中的应用[J]. 电网技术, 2002, 26(5): 15-19. [9] 齐郑, 艾欣, 王炳革, 等. 基于粗糙集理论的小电流接地系统故障选线方法的有效域[J]. 电网技术, 2005, 29(12): 43-46. [10] 庞清乐, 孙同景, 孙波, 等. 基于蚁群算法的神经网络配电网故障选线方法[J]. 继电器, 2007, 35(16): 1-6. [11] Narayanan A, Menneer T. Quantum artificial neural network architectures and components-[J]. Infor- mation Sciences, 2000, 128(3): 231-255. [12] 朱大奇, 陈尔奎. 旋转机械故障诊断的量子神经网络算法[J]. 中国电机工程学报, 2006, 26(1): 132-136. [13] 许丽佳. D-S理论在信息融合中的改进[J]. 系统工程与电子技术, 2004, 26(6): 717-720. [14] 王娜, 梁禹. 基于神经网络和D-S证据理论的故障诊断[J]. 仪器与仪表学报, 2005, 26(8): 773-774. |
|
|
|