|
|
Optimal Control of Single-Phase Full-Bridge Inverters by State Feedback Linearization |
Shuai Dingxin1, 2, Xie Yunxiang1, Yang Jinming1, Wang Xiaogang1 |
1. South China University of Technology Guangzhou 510640 China 2. Panzhihua University Panzhihua 617000 China |
|
|
Abstract Based on state feedback linearization control theory and linear quadratic control theory, a novel single-phase full-bridge inverter control strategy is proposed in the paper. The nonlinear affine model of the system is set up. The nonlinear state feedback transform equation is derived and the nonlinear system is realized linearization via state feedback linearization control theory. Further, this paper proposes a linear quadratic performance target based on passivity considerations. The feedback coefficients are optimized using the linear quadratic control theory. The control scheme proposed has advantage of simple controller structure, low cost and easy to implement with DSP. The validity of the control scheme is verified by numerical simulation and experiment results. Highly accurate steady output, less distorted waveform and strong robust to the disturbance of load are gained based on the proposed control scheme.
|
Received: 21 August 2008
Published: 18 February 2014
|
|
|
|
|
[1] Tai T L, Chen J S. UPS inverter design discrete-time sliding-mode control scheme[J]. IEEE Trans. on Industry Electronics, 2002, 49 (1): 67-75. [2] Tzou Y Y, Ou R S, Jung S L, et al. High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique[J]. IEEE Trans. on Power Electronics, 1997, 12 (4): 715-725. [3] 蔡昆, 李耀华, 胜晓松, 等. 高性能单相电压源逆变器的输出控制[J]. 电工技术学报, 2005, 20(1): 104-107. [4] 郭卫农, 陈坚. 基于状态观测器的逆变器数字双环控制技术研究[J]. 中国电机工程学报, 2002, 22(9): 64-68. [5] 熊健, 周亮, 张凯, 等. 一种高性能的单相逆变器多环控制方案[J]. 电工技术学报, 2006, 21(12): 78-82. [6] 徐应年, 赵阳, 谌海涛, 等. 电压型逆变电源输出电压IMC-PID控制技术研究[J]. 中国电机工程学报, 2007, 27(28): 90-95. [7] 胡跃明. 非线性控制系统理论与应用[M]. 北京: 国防工业出版社, 2005. [8] Isidori A. Nonlinear control systems: communications and control engineering series[M]. Berlin: Springer- Verlag, 1995. [9] Divelbiss A W, Wen J T. A path space approach to nonholomic motion planning in the presence of obstacles[J]. IEEE Trans. on Robotics and Automation, 1997, 13(3): 443-451. [10] 卢强, 孙元章. 电力系统非线性控制[M]. 北京: 科学出版社, 1993. [11] 邓卫华, 张波, 胡宗波, 等. CCM Buck变换器的状态反馈精确线性化的非线性解耦控制研究[J]. 中国电机工程学报, 2004, 24(5): 120-125. [12] 邓卫华, 张波, 丘东元, 等. CCM Boost变换器状态反馈精确线性化与非线性PID控制研究[J]. 中国电机工程学报, 2004, 24(8): 45-50. [13] 邓卫华, 张波, 丘东元, 等. 三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J]. 中国电机工程学报, 2005, 25(7): 97-103. [14] Chen Hairong, Xu Zheng, Zhang Fan. Nonlinear control for VSC based HVDC system[C]. Power Engineering Society General Meeting, Montreal, Canada, 2006. [15] Sira-ramirez H, Llic M. A geometric approach to the feedback control of switch mode DC-to-DC power supplies[J]. IEEE Trans. on Circuits and Systems, 1988, 35(10): 1291-1298. [16] Rioual P, Pouliquen H. Nonlinear control of PWM rectifier by state feedback linearization and exact PWM control[C]. Applied Power Electronics Conference and Exposition, Orlando, FL, USA, 1994. [17] Alvarez-Ramirez J, Espinosa-Perez G. Stability of current-mode control for DC-DC power converters[J]. Systems & Control Letters, 2002, 45(2): 113-119. [18] 高朝晖, 林辉, 张晓斌. Boost变换器带恒功率负载状态反馈精确线性化与最优跟踪控制技术研究[J]. 中国电机工程学报, 2007, 27(13): 70-75. [19] 解学书. 最优控制——理论与应用[M]. 北京: 清华大学出版社, 1986. [20] 孙孝峰, 魏坤, 邬伟扬, 等. 三相变流器最优控制研究[J]. 中国电机工程学报, 2004, 24(7): 168-172. [21] Byrnes C I, Isidori A, Williams J C. Passivity, feedback equivalence and the global stabilization of minimum phase nonlinear systems[J]. IEEE Trans. on Automatic Control, 1991, 36(11): 1228-1240. [22] 乔树通, 伍小杰, 姜建国. 基于无源性的滑模控制在DC/DC变换器中的应用[J]. 电工技术学报, 2003, 18(4): 41-45. [23] Ortega R, Loria A, Nicklasson P J, et al. Passivity-based control of euler lagrange systems[M]. NewYork: Spinger-Verlag, 1998. |
|
|
|