Abstract:Different from the AC bus, there is only one transmission line on the DC bus. The principle of the single-ended traveling waves fault location is not affected by other transmission lines. There is not the case that the voltage traveling waves are zero or weak when single-phase grounding faults locate near the zero-cross point or phase-to-phase faults locate near equal point of two phase voltages. The real physics boundary consists of the smoothing reactor and the DC filter on the UHVDC transmission lines. The reflection coefficient of the fault voltage traveling wave is positive and approached to 1 in the boundary. A RG color pattern graph is formed by mapping the bipolar fault voltage traveling waves to R and G color channels. The color catastrophe point of the RG color pattern graph corresponds to the time of the traveling wave arriving at measuring point while the color catastrophe direction corresponds to the polarity of the traveling wave, namely the red catastrophe corresponds to the positive polarity surge and the green catastrophe corresponds to the negative polarity surge. According to the color catastrophe direction of the initial traveling wave being contrary to that of the reflected wave from the fault point and being the same as that of the reflected wave from the remote terminal boundary, it is to be identified whether the fault located within half of the transmission line, and the character of the second traveling wave. The singularity detection of the fault traveling wave was achieved by the image edge detection, thereby single-terminal traveling wave fault location is implemented. The proposed method is simple, intuitive and without adopting wavelet transform. A large amount of simulation results show that the proposed method is reliable and effective.
束洪春, 张敏, 张广斌, 孙士云, 刘可真. ±800kV直流输电线路单端行波故障定位的红绿色彩模式检测[J]. 电工技术学报, 2010, 25(11): 155-163.
Shu Hongchun, Zhang Min, Zhang Guangbin, Sun Shiyun, Liu Kezhen. A RG Color Pattern Detection of Single-Ended Traveling Wave Fault Location on ±800kV UHVDC Transmission Lines. Transactions of China Electrotechnical Society, 2010, 25(11): 155-163.
[1] 董新洲, 葛耀中, 徐丙垠.利用暂态电流行波的输电线路故障测距研究[J].中国电机工程学报, 1999, 19(4):76-80. Dong Xinzhou, Ge Yaozhong, Xu Bingyin.Research of fault location based on current traveling waves[J]. Proceedings of the CSEE, 1999, 19(4):76-80. [2] 陈平, 徐丙垠, 葛耀中.一种利用暂态电流行波的输电线路故障测距方法[J].电力系统自动化, 1999, 23(14):29-33. Chen Ping, Xu Bingyin, Ge Yaozhong.A novel method for fault location of transmission lines using fault transient current traveling waves[J].Automation of Electric Power Systems, 1999, 23(14):29-33. [3] 李一峰, 陈平.一种输电线路故障测距新方法[J].电力系统及其自动化学报, 2008, 20(4):125-128. Li Yifeng, Chen Ping.New method of fault location for transmission lines[J]. Proceedings of CSU- EPSA, 2008, 20(4):125-128. [4] 葛耀中.新型继电保护和故障测距的原理与技术[M]. 西安:西安交通大学出版社, 1996. [5] 葛耀中, 董新洲, 董杏丽.测距式行波距离保护的研究(一)——理论与实现技术[J].电力系统自动化, 2002, 26(6):34-40. Ge Yaozhong, Dong Xinzhou, Dong Xingli.Traveling wave based distance protection with fault location part one——theory and technology[J].Automation of Electric Power Systems, 2002, 26(6):34-40. [6] 施慎行, 董新洲, 周双喜.单相接地故障行波分 析[J]. 电力系统自动化, 2005, 29(23):29-32, 53. Shi Shenxing, Dong Xinzhou, Zhou Shuangxi. Analysis of single-phase-to-ground fault generated traveling waves[J].Automation of Electric Power Systems, 2005, 29(23):29-32, 53. [7] 施慎行, 董新洲, 周双喜.单相接地故障下第2个反向行波识别的新方法[J].电力系统自动化, 2006, 30(1):41-44, 59. Shi Shenxing, Dong Xinzhou, Zhou Shuangxi.New principle to identify the second reverse traveling wave generated by single-phase-to-ground fault[J]. Automation of Electric Power Systems, 2006, 30(1):41-44, 59. [8] 张帆, 潘贞存, 马琳琳, 等.基于模量行波传输时间差的线路接地故障测距与保护[J].中国电机工程学报, 2009, 29(10):78-83. Zhang Fan, Pan Zhencun, Ma Linlin, et al. Transmission line fault location and protection based on the gap between zero mode and aerial mode traveling wave propagation time[J].Proceedings of the CSEE, 2009, 29(10):78-83. [9] Daubechies I.The wavelet transform, time frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5):961-983. [l0] 覃剑, 陈祥训, 郑健超, 等.利用小波变换的双端行波测距新方法[J].中国电机工程学报, 2000, 20(8):6-10. Qin Jian, Chen Xiangxun, Zheng Jianchao, et a1.A new double terminal method of traveling wave fault[J]. Proceedings of the CSEE, 2000, 20(8):6-10. [l1] 覃剑, 彭莉萍, 王和春.基于小波变换技术的输电线路单端行波故障测距[J].电力系统自动化, 2005, 29(19):62-65, 86. Qin Jian, Peng Liping, Wang Hechun.Single terminal methods of traveling wave fault location in transmission line using wavelet transform[J]. Automation of Electric Power Systems, 2005, 29(19):62-65, 86. [12] 束洪春.电力工程信号处理应用[M].北京:科学出版社, 2009. [13] Evrenosoĝlu C Y, Abur A, Akleman E, et al.Bewley diagrams revisited via visualization[J]. IEEE Transactions on Power Systems, 2009, 24(3):1401-1407. [14] 束洪春, 司大军, 孙向飞.一种用于行波保护的电压过零点附近故障检测方法[J].电网技术, 2005, 29(20):73-76. Shu Hongchun, Si Dajun, Sun Xiangfei. A novel approach to detect faults located near zero-cross point of voltage for traveling wave based protection[J]. Power System Technology, 2005, 29(20):73-76. [15] 刘振亚.特高压直流输电技术研究成果专辑[M].北京:中国电力出版社, 2006. [16] 韩民晓, 丁辉, 陈修宇, 等.高压直流输电系统电磁暂态建模[J].电力系统及其自动化学报, 2008, 20(4):7-11. Han Minxiao, Ding Hui, Chen Xiuyu, et a1. Electromagnetic transient modeling of HVDC system[J].Proceedings of the CSU-EPSA.2008, 20(4):7-11. [17] 吴维韩, 张芳榴.电力系统过电压数值计算[M]. 北京:科学出版社, 1989. [18] Bewley L V.Traveling waves on transmission systems[J]. A.I.E.E. Trans.1931, 50(2):532-550. [19] Rorden H L. Solution of circuits subjected to traveling waves[J].A.I.E.E. Trans.1932, 51(3):824-836. [20] 束洪春, 王永治, 程春和, 等.±800kV直流输电线路雷击电磁暂态分析与故障识别[J].中国电机工程学报, 2008, 28(19):93-100. Shu Hongchun, Wang Yongzhi, Cheng Chunhe, et al.Analysis of electromagnetic transient and fault detection on ±800kV UHVDC transmission lines with lightning stroke[J].Proceedings of the CSEE, 2008, 28(19):93-100. [21] 束洪春, 张广斌, 孙士云, 等.±800kV直流输电线路雷电绕击与反击的识别方法[J].中国电机工程学报, 2009, 29(7):13-19. Shu Hongchun, Zhang Guangbin, Sun Shiyun, et al.Identification of shielding failure and back striking in UHVDC transmission lines[J].Proceedings of the CSEE, 2009, 29(7):13-19.