Abstract:With non-synchronization sampling, the spectral leakage and picket fence effect have great influence on the performance of dielectric loss angle measurement when using FFT. A phase difference revise algorithm for dielectric loss angle measurement is presented based on triangular self-convolution window (TSCW), and the application in on-line dielectric loss angle monitoring of high voltage capacitive-type equipment is introduced in this paper. As the triangular self-convolution window has good side lobe behavior, the new algorithm can improve the accuracy of dielectric loss angle measurement by weighting the signal with TSCW. The simulation and application results, which include fundamental frequency fluctuation, changing of sampling frequency, real value of dielectric loss angle variance, white noise, changing of harmonic component verify the effectiveness and practicability of the algorithm.
温和, 滕召胜, 曾博, 高云鹏, 王一. 基于三角自卷积窗的介损角测量算法及应用[J]. 电工技术学报, 2010, 25(7): 192-198.
Wen He, Teng Zhaosheng, Zeng Bo, Gao Yunpeng, Wang Yi. Dielectric Loss Angle Measurement Algorithm and Application Based on Triangular Self-Convolution Window. Transactions of China Electrotechnical Society, 2010, 25(7): 192-198.
[1] Yu X, Yi B, Liu F, et al. Prediction of the dielectric dissipation factor tanδ of polymers with an ANN model based on the DFT calculation[J]. Reactive and Functional Polymers, 2008, 68(11): 1557-1562. [2] Lee S, Yang J, Younsi K, et al. An online ground wall and phase-to-phase insulation quality assessment technique for AC-machine stator windings[J]. IEEE Transactions on Industry Applications, 2006, 42(4): 946-957. [3] 柴旭峥, 关根志, 文习山, 等. tanδ 高准确度测量的加权插值FFT算法[J]. 高电压技术, 2003, 29(2): 32-33. [4] 杨晓东, 唐超. 改进的数字化测量方法在介损测量中的应用[J]. 重庆工学院学报(自然科学版), 2007, 21(5): 47-50. [5] 赵秀山, 谈克雄, 朱德恒, 等. 介质损耗角的数字化测量[J]. 清华大学学报(自然科学版), 1996, 36(9): 51-56. [6] 尚勇, 杨敏中, 王晓蓉, 等. 谐波分析法介质损耗因数测量的误差分析[J]. 电工技术学报, 2002, 17(3): 67-71. [7] 王微乐, 李福祺, 谈克雄. 测量介质损耗角的高阶正弦拟合算法[J]. 清华大学学报(自然科学版), 2001, 41(9): 5-8. [8] 徐志钮, 律方成, 李和明. 加Blackman-Harris窗插值算法仿真介损角测量[J]. 高电压技术, 2007, 33(3): 104-108. [9] Agrez D. Interpolation in the frequency domain to improve phase measurement[J]. Measurement, 2008, 41(2): 151-159. [10] Qian H, Zhao R X, Chen T. Interharmonics analysis based on interpolating windowed FFT algorithm[J]. IEEE Trans. on Power Delivery, 2007, 22(2): 1064-1069. [11] 张介秋, 梁昌洪, 韩峰岩, 等. 介质损耗因数的卷积窗加权算法[J]. 电工技术学报, 2005, 20(3): 100-104. [12] Chen K F, Li Y F. Combining the Hanning windowed interpolated FFT in both directions[J]. Computer Physics Communications, 2008, 178(12): 924-928. [13] 丁康, 朱小勇. 适用于加各种窗的一种离散频谱相位差校正法[J]. 电子学报, 2001, 29(7): 987-989. [14] Krupka J, Breeze J, Centeno A, et al. Measurements of permittivity, dielectric loss tangent, and resistivity of float-zone silicon at microwave frequencies[J]. IEEE Trans. on Microwave Theory and Techniques, 2006, 54(11): 3995-4001. [15] Levi R, Manifase S, Co D E, et al. Further studies of anomalous phenomena in dielectric-loss measurements transformer bushings model[J]. IEEE Trans. on Power Delivery, 1995, 10(2): 889-895. [16] Geyer R G, Kabos P, et al. Dielectric sleeve resonator techniques for microwave complex permittivity evaluation[J]. IEEE Trans. on Instrumentation and Measurement, 2002, 51(2): 383-392. [17] Dankov P I. Two-resonator method for measurement of dielectric anisotropy in multilayer samples[J]. IEEE Trans. on Microwave Theory and Techniques, 2006, 54(4): 1534-1544. [18] Nuttall A H. Some windows with very good sidelobe behavior[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1981, 29(1): 84-91. [19] 滕召胜, 温和, 等. 三角自卷积窗加权算法: 中国, 200810031065.7[P]. 2008. [20] David M M, Alireza K Z, Thomas H O. A new technique of measurement of nonstationary harmonics[J]. IEEE Trans. on Power Delivery, 2007, 22(1): 387-395. [21] Belega D, Dallet D. Frequency estimation via weighted multipoint interpolated DFT[J]. Science, Measurement & Technology, IET, 2008, 2(1): 1-8.