Abstract:The scientific research achievements on mathematical models for electrical characteristics of high intensity gaseous discharge lamp (HID) are synthesized. The advantages and disadvantages of these models are analyzed. A new mathematical model for the electrical characteristics of HID lamp is put forward and the validity of the new model for HID is checked out by experiments. The validity of the new model in low and high frequency is also inspected by a simulation analysis. The results show that the new mathematical model presented in this paper for electrical characteristics of HID lamp has the advantages of more wide applicable frequency range and much more easy in acquiring the parameters used in the model.
魏新劳, 李家辉, 王永红, 陈庆国. 高强度气体放电灯电气特性数学模型[J]. 电工技术学报, 2010, 25(6): 123-129.
Wei Xinlao, Li Jiahui, Wang Yonghong, Chen Qingguo. Mathematical Model for Electrical Characteristics of High Intensity Gaseous Discharge Lamp. Transactions of China Electrotechnical Society, 2010, 25(6): 123-129.
[1] 梁贞. 2005年全国HID灯产销调研报告[J]. 中国照明电器, 2007(3):6-8. [2] Shvartsas M, Ben-Yaakov S. A SPICE compatible model of high intensity discharge lamps[C]. Power Electronics Specialists Conference PESC 99, 30th Annual IEEE, 1999: 1037-1042. [3] Wei Yan, Hui S Y R. A universal PSpice model for HID lamps[J]. IEEE Transactions on Industry Applications, 2005, 41: 1594-1602. [4] Antón J C, Blanco C, Ferrero F, et al. An equivalent conductance model for high intensity discharge lamps[C]. Conference Recording of the 37th Industry Applications Conference, 2002: 1494-1498. [5] 杨国仁, 吕晓东. 高压钠灯的PSPICE模型[J]. 照明工程学报, 2006, 12(4): 8-11. [6] 王云芳, 吴伟, 王洁玮, 等. HID灯的Pspice模型研究[J]. 上海大学学报(自然科学版), 2005, 11(6): 583-588. [7] 黄绍平, 杨青, 李靖. 基于Matlab的电弧模型仿 真[J]. 电力系统及其自动化学报, 2005, 10(5): 64-66. [8] Cassie A M. Arc rupture and circuit severity: a new theory[R]. CIGRE report, 1939. [9] Mayr O. Beiträge zur theorie des lichtbogens und seiner löschung[J]. Archiv Für Elektrotechnik, 1943: 588-608. [10] Paul K C, Hiramoto T, Horikawa Y, et al. Theoretical and experimental investigation of an HID lamp[C]. The Conference Record of the 33rd IEEE International Conference on Plasma Science, 2006: 129-130. [11] In Kyu Lee, Sung Jin Choi, Kyu Chan Lee, et al. Modeling and control of automotive HID lamp ballast[C]. Proceedings of the IEEE International Conference on Power Electronics and Drive Systems, 1999, 1: 506-510. [12] Wei Yan, Hui S Y R. A universal PSpice model for HID lamps[J]. IEEE Transactions on Industry Applications, 2005, 41: 1594-1602. [13] Wei Yan, Hui S Y R, Chung H, et al. Genetic algorithm optimized for high intensity discharge lamp model[J]. Electronics Letters, 2002, 38: 110-112. [14] Osorio R, Oliver M A, Ponce M, et al. Thermal dynamic model for HID lamps with the outer-bulb effects[C]. Electronics, Robotics and Automotive Mechanics Conference, 2006, 1: 197-202. [15] Flesch P, Neiger M. Numerical investigation of time dependent electrode plasma interaction in commercial HID lamps[J]. IEEE Transactions on Plasma Science, 2005, 33: 508-509. [16] Paul K C, Takemura T, Hiramoto T, et al. Self-consistent model of HID lamp for design applications[J]. IEEE Transactions on Plasma Science, 2006, 34: 1536-1547. [17] Yan W, Hui S Y R, Chung H. Nonlinear high-intensity discharge lamp model including a dynamic electrode voltage drop[J]. IEE Proceedings- Science, Measurement and Technology, 2003, 150: 161-167. [18] Paul K C, Takemura T, Hiramoto T, et al. Development of a robust 3-D model for HID lamps and comparison of predicted and measured electrode temperatures[J]. IEEE Transactions on Plasma Science, 2007, 35: 188-196.