[1] 税国双, 汪越胜, 曲建民. 材料力学性能退化的超声无损检测与评价[J]. 力学进展, 2005, 35(1): 52-68.
Shui Guoshuang, Wang Yusheng, Qu Jianmin.Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound[J]. Progress in mechanics, 2005, 35(1): 52-68.
[2] Kim G, In C W, Kim J Y, et al.Air-coupled detection of nonlinear Rayleigh surface waves in concrete-application to microcracking detection[J]. NDT & E International, 2014, 67(4): 64-70.
[3] 张剑锋, 轩福贞, 项延训. 材料损伤的非线性超声评价研究进展[J]. 科学通报, 2016, 61(14): 1536-1550.
Zhang Jianfeng, Xuan Fuzhen, Xiang Yanxun.Evaluation of material damage using nonlinear ultrasonic wave[J]. Chinese Science Bulletin, 2016, 61(14): 1536-1550.
[4] Matlack K H, Kim J Y, Jacobs L J, et al.Review of second harmonic generation measurement techniques for material state determination in metals[J]. Journal of Nondestructive Evaluation, 2015, 34(1): 273-296.
[5] 刘素贞, 庄东超, 商士博, 等. 高频涡流加载下闭合裂纹的动态响应特性[J]. 电工技术学报, 2015, 30(18): 246-253.
Liu Suzhen, Zhuang Dongchao, Shang Shibo, et al.Dynamic response characteristics of closed cracks under high frequency eddy current loading[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 246-253.
[6] Jhang K Y.Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(1): 123-135.
[7] 张闯, 曹晓琳, 刘素贞, 等. 基于累积效应的铝材塑性损伤电磁超声非线性检测[J]. 电工技术学报, 2019, 34(19): 3961-3967.
Zhang Chuang, Cao Xiaolin, Liu Suzhen, et al.Electromagnetic ultrasonic nonlinear detection of aluminum with plastic damage based on cumulative effect[J]. Transaction of China Electrotechnical Society, 2019, 34(19): 3961-3967.
[8] 金亮, 寇晓斐, 郭富坤, 等. 基于电磁超声换能器的铁磁材料电磁声发射检测方法[J]. 电工技术学报, 2017, 32(18): 98-105.
Jin Liang, Kou Xiaofei, Guo Fukun, et al.Electromagnetic acoustic emission detection method for ferromagnetic materials based on electromagnetic ultrasonic transducer[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 98-105.
[9] Cantrell J H.Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460(2043): 757-780.
[10] Hikata A, Sewell F A, Elbaum C.Generation of ultrasonic second and third harmonics due to dislocations II[J]. Physical Review, 1966, 151(2): 442-449.
[11] Cantrell J H.Nonlinear dislocation dynamics at ultrasonic frequencies[J]. Journal of Applied Physics, 2009, 105(4): 043520.
[12] Kim J Y, Qu Jianmin, Jacobs L J, et al.Acoustic nonlinearity parameter due to microplasticity[J]. Journal of Nondestructive Evaluation, 2006, 25(1): 28-36.
[13] Bermes C, Kim J Y, Qu Jianmin, et al.Nonlinear Lamb waves for the detection of material nonlinearity[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 638-646.
[14] Pruell C, Kim J Y, Qu Jianmin, et al.A nonlinear-guided wave technique for evaluating plasticity-driven material damage in a metal plate[J]. NDT&E International, 2009, 42(3): 199-203.
[15] Shui G, Wang Y S, Gong F.Evaluation of plastic damage for metallic materials under tensile load using nonlinear longitudinal waves[J]. NDT & E International, 2013, 55: 1-8.
[16] Jhang K Y, Kim K C.Evaluation of material degradation using nonlinear acoustic effect[J]. Ultrasonics, 1999, 37(1): 39-44.
[17] Choi S, Seo H, Jhang K Y.Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy[J]. Research in Nondestructive Evaluation, 2015, 26(1): 13-22.
[18] 刘素贞, 李礼, 蔡智超, 等. 非线性电磁超声对铝合金拉伸变形评价研究[J]. 声学学报, 2017(1): 60-66.
Liu Suzhen, Li li, Cai Zhichao, et al. Evaluation of tensile deformation of aluminum alloy by nonlinear electromagnetic ultrasound[J]. Acta Acustica, 2017(1): 60-66.
[19] 吕敬祥, 刘国强. 磁声电无损检测及改进的EMD消噪方法[J]. 电工技术学报, 2018, 33(17): 3935-3942.
Lü Jingxiang, Liu Guoqiang.Magnetoacousto electrical NDT and improved EMD de-noising algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3935-3942.
[20] Xie Yuedong, Yin Liyuan, Liu Zenghua, et al.A novel variable-length meander-line-coil EMAT for side lobe suppression[J]. IEEE Sensors Journal, 2016, 16(16): 6279-6287.
[21] 孙文秀, 刘国强, 夏慧, 等. 非铁磁材料的电磁超声接收过程数值模拟及实验研究[J]. 电工技术学报, 2018, 33(19): 4443-4449.
Sun Wenxiu, Liu Guoqiang, Xia hui, et al. Numerical simulation and experimental study on electromagnetic ultrasonic receiving process of non-ferromagnetic materials[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4443-4449.
[22] Rueter D, Morgenstern T.Ultrasound generation with high power and coil only EMAT concepts[J]. Ultrasonics, 2014, 54(8): 2141-2150.
[23] GBT 228.1—2010 金属材料拉伸试验第1部分:室温试验方法[S]. 北京: 中国标准出版社, 2010. |