Electromagnetic Decoupling Optimal Design of Electric Variable Transmission Used for Hybrid Electric Vehicle
Xu Qiwei1, Sun Jing1, Zhao Meng1, Jiang Xiaobiao1, Cui Shumei2
1. The State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China ; 2. School of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China
Abstract:This paper studied the electromagnetic coupling problem of electric variable transmission (EVT) used for hybrid electric vehicle (HEV). Firstly, by analyzing the power split mode of EVT could be seen that, although the coupling between electromagnetic fields would improve fuel economies and reduce exhaust emissions, it also caused the serious electromagnetic coupling issues of EVT. Next, to solve the internal magnetic field coupling issues of EVT, the internal equivalent magnetic circuit models of EVT with flux-isolation ring or not were proposed to research the factors affecting the coupling degree under two hybrid excitation source; Then, the finite element method (FEM) models of two kinds of EVT were established, and the internal magnetic field distribution law of them were studied respectively based on the coupling factors; Compared and analyzed of the disciplines, the optimal electromagnetic decoupling scheme was proposed to realize the excellent electromagnetic and control performances of EVT; Finally, the correctness of the decoupling scheme was verified on the basis of the magnetic field distribution, the magnetic field distribution and the torque characteristics by FEM electromagnetic simulation.
徐奇伟, 孙静, 赵蒙, 蒋小彪, 崔淑梅. 混合动力车用电气无级变速器的电磁解耦优化设计[J]. 电工技术学报, 2018, 33(9): 2005-2014.
Xu Qiwei, Sun Jing, Zhao Meng, Jiang Xiaobiao, Cui Shumei. Electromagnetic Decoupling Optimal Design of Electric Variable Transmission Used for Hybrid Electric Vehicle. Transactions of China Electrotechnical Society, 2018, 33(9): 2005-2014.
[1] Hoeijmakers M J, Rondel M.The electrical variable transmission in a city bus[C]//IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 2004, 4: 2773-2778. [2] 王晓远, 高鹏, 赵玉双, 电动汽车用高功率密度电机关键技术[J]. 电工技术学报, 2015, 30(6): 53-59. Wang Xiaoyuan, Gao Peng, Zhao Yushuang.Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Socierty, 2015, 30(6): 53-59. [3] Cheng Yuan, Cui Shumei, Song Liwei, et al.The study of the operation modes and control strategies of an advanced electromechanical converter for automobiles[J]. IEEE Transactions on Magnetics, 2007, 43(1): 430-433. [4] 方程, 许海平, 薛劭申, 等. 直驱型多相永磁同步电机转矩脉动及损耗特性[J]. 电工技术学报, 2014, 29(5): 149-159. Fang Cheng, Xu Haiping, Xue Shaoshen, et al.Torque ripple and losses of direct-drive multi-phase permanent magnet synchronous machines[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 149-159. [5] 黄文祥, 张千帆, 崔淑梅, 等. 感应式电气变速器的电磁耦合与解耦控制[J]. 电机与控制学报, 2011, 15(5): 16-21. Huang Wenxiang, Zhang Qianfan, Cui Shumei, et al.Induction type electrical variable transmission’s electromagnetic coupling and its decoupling control[J]. Electric Machines and Control, 2011, 15(5): 16-21. [6] 张虎, 张永昌, 夏波, 等. 基于空间矢量调制的感应电机无速度传感器模型预测磁链控制[J]. 电工技术学报, 2017, 32(3): 97-104. Zhang Hu, Zhang Yongchang, Xia Bo, et al.Speed sensorless model predictive flux control of induction motor drives based on space vector modulation[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 97-104. [7] 尹忠刚, 肖鹭, 孙向东, 等. 基于粒子群优化的感应电机模糊扩展卡尔曼滤波器转速估计方法[J]. 电工技术学报, 2016, 31(6): 55-65. Yin Zhonggang, Xiao Lu, Sun Xiangdong, et al.A speed estimation method of fuzzy extended Kalman filter for induction motors based on particle swarm optimization[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 55-65. [8] Liu Yulong, Ho S L, Fu Weinong.Novel electrical continuously variable transmission system and its numerical model[J]. IEEE Transactions on Magnetics, 2014, 50(2): 7018704. [9] Liu Yulong, Niu Shuangxia, Fu Weinong.Design of an electrical continuously variable transmission based wind energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6745-6755. [10] 庞珽, 黄声华, 黄晓辉. 双转子电机及其典型应用[J]. 微电机, 2007, 40(2): 66-69. Pang Ting, Huang Shenghua, Huang Xiaohui.New type double rotor machine DRM and its typical application[J]. Micromotors, 2007, 40(2): 66-69. [11] 崔淑梅, 程远, 陈清泉. 先进汽车电气变速器[J]. 电工技术学报, 2006, 21(10): 111-116. Cui Shumei, Cheng Yuan, Chen Qingquan.An advanced electrical variable transmission for automobiles[J]. Transactions of China Electrotechnical Society, 2006, 21(10): 111-116. [12] 林克曼, 李念, 林明耀, 等. 考虑漏磁效应的新型磁控可调电抗器的磁路建模和特性[J]. 电工技术学报, 2015, 30(2): 114-120. Lin Keman, Li Nian, Lin Mingyao, et al.Magnetic circuit modeling and characteristics of a new type of saturable-core controllable reactor with flux leakage effect[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 114-120. [13] 罗玉涛, 孟凡珍, 符兴锋. 电磁耦合无级变速系统磁路等效方法[J].电工技术学报, 2011, 26(1): 1-6. Luo Yutao, Meng Fanzhen, Fu Xingfeng.Study of magnetic circuit equivalent method of electro-magnetic coupling continuously variable transmission system[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 1-6. [14] Xu Qiwei, Sun Jing, Luo Lingyan, et al.A study on magnetic decoupling of compound-structure permanent-magnet motor for HEVs application[J]. Energies, 2016, 9(10): 819.