Abstract:The harmonic analysis method based on fundamental windows and generalized cosine windows was used to eliminate the errors of dielectric loss factor tanδ measurement caused by non-integral period truncation, but the analysis result is restricted by the performance of the fixed side lobes of these windows. Kaiser window can be defined by a group of adjustable function and the specific weight between the major lobe and side lobes decay of Kaiser window can be freely selected, so the commutation relation between the major lobe and side lobes decay can be presented in the round. The characteristic of side lobes of Kaiser window is discussed in this paper, and an approach for tanδ measurement based on Kaiser window double-spectrum-line interpolation FFT is proposed. The applicable rectification formulas of the interpolation are obtained by using polynomial curve fit functions. The arithmetic expression of fundamental initial phase and tanδ is deduced. The simulation results show that Kaiser window function can restrains spectral leakage well, and the influences on tanδ measurement caused by harmonic, fundamental frequency fluctuation, sampling frequency and sampling time length in change and white noise are all overcome by using the approach presented in this paper. This approach can be designed and realized easily and has precise and steady results, which can be used in tanδ offline measurement and online monitoring.
高云鹏, 滕召胜, 曾博, 杨步明. 基于Kaiser窗频谱校正的介质损耗因数测量[J]. 电工技术学报, 2009, 24(5): 203-208.
Gao Yunpeng, Teng Zhaosheng, Zeng Bo, Yang Buming. Dielectric Loss Factor Measurement Based on Kaiser Window Spectral Correction. Transactions of China Electrotechnical Society, 2009, 24(5): 203-208.
[1] Wang P, Raghuveer M R, Mc Dermid W, et al. A digital technique for the on-line measurement of dissipation factor and capacitance[J]. IEEE Trans. on Dielectric Electrical Insulation, 2001, 8(2): 228-232. [2] 金之俭, 肖登明, 王耀德. 绝缘介质损耗角的数字化测量研究[J]. 高电压技术, 1999, 25(1): 49-50. [3] Gregorio A, Mario S, Amerigo T. Windows and interpolation algorithms to improve electrical measure- ment accuracy[J]. IEEE Trans. on Instrumentation and Measurement, 1989, 38(4): 856-863. [4] 尚勇, 杨敏中, 王晓蓉, 等. 谐波分析法介质损耗因数测量的误差分析[J]. 电工技术学报, 2002, 17(3): 67-71. [5] 柴旭峥, 关根志, 文习山, 等. tanδ 高准确度测量的加权插值FFT算法[J]. 高电压技术, 2003, 29(2): 32-33. [6] 邱海锋, 周浩. 应用改进的布莱克曼插值算法精确估算介损角[J]. 高压电器, 2008, 44(3): 236-238, 269. [7] 王楠, 律方成, 梁英, 等. 基于高精度DFT的介损数字测量方法[J]. 高电压技术, 2003, 29(4): 3-8. [8] 张介秋, 梁昌洪, 韩峰岩, 等. 介质损耗因数的卷积窗加权算法[J]. 电工技术学报, 2005, 20(3): 100- 104. [9] 王徽乐, 李福祺, 谈克雄. 测量介质损耗角的高阶正弦拟合算法[J]. 清华大学学报, 2001, 41(9): 5-8. [10] 袁旭龙, 冯小华. 改进保留非线性算法在介损测量应用中的研究[J]. 高电压技术, 2005, 31(3): 39-40. [11] 陈楷, 胡志坚, 王卉, 等. 介损角非同步采样算法及其应用[J]. 电网技术, 2004, 28(18): 58-61. [12] Li Q, Zhao T, Siew W H. Definition and digital algorithms of dielectric loss factor for condition monitoring of high-voltage power equipment with harmonics emphasis[J]. IEE Proceedings - Generation, Transmission and Distribution, 2005, 152(3): 309- 312. [13] 段大鹏, 江秀臣, 孙才新, 等. 基于正交分解的介质损耗因数数字测量算法[J]. 中国电机工程学报, 2008, 28(7): 127-133. [14] Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE, 1978, 66(1): 51-83. [15] 潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(I) 窗函数研究[J]. 电工技术学报, 1994, 2(1): 50-54. [16] Kaiser J F. Nonrecursive digital filter design using io-sinh window function[J]. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’74), 1974, (4): 20-23. [17] Thomas G, Flores B C, Jae Sok-Son. SAR sidelobe apodization using the Kaiser window[C]. Proceedings of the IEEE International Conference on Image Processing, 2000, 1(9): 709-712. [18] 龚纯, 王正林. MATLAB语言常用算法程序集[M]. 北京: 电子工业出版社, 2008.