Abstract:In order to extend the operating range and maintain the linear control characteristics, a new type of saturable-core controllable reactor(SCCR) is designed and researched based on the theory of magnetic amplifier. An air gap is inserted in the ferromagnetic core to improve the linearization of the saturation characteristics. The magnetization mechanism and characteristics are studied. The magnetic flux distribution of the reactor is analyzed by using the three-dimension finite element method (FEM). On the basis of above research, the equivalent magnetic circuit model is built incorporating the magnetic flux leakage. The linear operating range of the new type of SCCR is increased and the capacity of DC source connected to the SCCR is also reduced. The simulation is compared with the prototype test results. The research results show that the equivalent magnetic circuit model is accurate. This has reference value in the design and application of the new saturable-core controllable reactor.
林克曼,李念,林明耀,万秋兰. 考虑漏磁效应的新型磁控可调电抗器的磁路建模和特性[J]. 电工技术学报, 2015, 30(2): 114-121.
Lin Keman,Li Nian,Lin Mingyao,Wan Qiulan. Magnetic Circuit Modeling and Characteristics of a New Type of Saturable-Core Controllable Reactor with Flux Leakage Effect. Transactions of China Electrotechnical Society, 2015, 30(2): 114-121.
[1] Mathur R M, Varma R K. Thyristor-based FACTS controllers for electrical transmission systems[M]. New Jersey: John Wiley & Sons, 2002. [2] 李达义, 陈乔夫. 基于磁通可控的可调电抗器的新原理[J]. 中国电机工程学报, 2003, 23(2): 116-120. Li Dayi, Chen Qiaofu. A novel principle of adjustable reactor based on magnetic flux controllable[J]. Proceedings of the CSEE, 2003, 23(2): 116-120. [3] 张宇, 陈乔夫, 程路, 等. 基于磁通补偿的高压大容量可控电抗器[J]. 电工技术学报, 2009, 24(3): 93-98. Zhang Yu, Chen Qiaofu, Cheng Lu, et al. A high- voltage and large-capacity controllable reactor based on magnetic flux compensating[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 93-98. [4] 宋江保, 王贺萍, 张战永, 等. 三相磁阀式可控电抗器的分析研究[J]. 电力系统保护与控制, 2009, 37(23): 20-22. Song Jiangbao, Wang Heping, Zhang Zhanyong, et al. Analytical study of controllable reactor based on three-phase magnetism valve type[J]. Power System Protection and Control, 2009, 37(23): 20-22. [5] 陈绪轩, 田翠华, 陈柏超, 等. 多级饱和磁阀式可控电抗器谐波分析数学模型[J]. 电工技术学报, 2011, 26(3): 57-64. Chen Xuxuan, Tian Cuihua, Chen Baichao, et al. Mathematical model for harmonics analysis of the multi-stage saturable magnetic-valve controllable reactor [J]. Transactions of China Electrotechnical Society, 2011, 26(3): 57-64. [6] Wass T, Hornfeldt S, Valdemarsson S. Magnetic circuit for a controllable reactor[J]. IEEE Transactions on Magnetics, 2006, 42(9): 2196-2200. [7] 刘仁, 赵国生, 王欢, 等. 三相磁阀式可控电抗器的特性仿真分析[J]. 电力系统保护与控制, 2011, 39(7): 110-114. Liu Ren, Zhao Guosheng, Wang Huan, et al. Characteristic simulation analysis of three-phase magnetic valve type controlled reactor[J]. Power System Protection and Control, 2011, 39(7): 110-114. [8] 杨民生, 王耀南, 欧阳红林, 等. 基于可控电抗器的无接触电能传输系统动态补偿[J]. 电工技术学报, 2009, 24(5): 183-189. Yang Minsheng, Wang Yaonan, Ouyang Honglin, et al. Dynamic compensation of contact-less power transmission system based on controlled reactor[J]. Transactions of China Electrotechnical Society, 2009, 24(5): 183-189. [9] 周沛洪, 何慧雯, 戴敏, 等. 可控高抗在1000kV交流紧凑型输电线路中的应用[J]. 高电压技术, 2011, 37(8): 1832-1842. Zhou Peihong, He Huiwen, Dai Min, et al. Application of controllable reactors to 1000kV AC compact transmission line[J]. High Voltage Engineering, 2011, 37(8): 1832-1842. [10] 魏云冰, 李涛, 张国亮, 等. 基于瞬时无功功率理论的磁控电抗器控制方法[J]. 电力系统保护与控制, 2011, 39(22): 117-121. Wei Yunbing, Li Tao, Zhang Guoliang, et al. A control method for the magnetic-valve controllable reactor based on instantaneous reactive power theory [J]. Power System Protection and Control, 2011, 39(22): 117-121. [11] 潘雄, 丁新良, 黄明良, 等. 可控高压电抗器应用于西北750kV电网的仿真分析[J]. 电力系统自动化, 2008, 31(22): 104-107. Pan Xiong, Ding Xinliang, Huang Mingliang, et al. Simulation analysis on application of controllable reactors in 750kV northwest China power grid[J]. Automation of Electric Power Systems, 2008, 31(22): 104-107. [12] 周勤勇, 郭强, 卜广全, 等. 可控电抗器在我国超/特高压电网中的应用[J]. 中国电机工程学报, 2007, 27(7): 1-6. Zhou Qinyong, Guo Qiang, Bu Guangquan, et al. Application of controllable reactors in China's power grid at extra and ultra voltage level[J]. Proceedings of the CSEE, 2007, 27(7): 1-6. [13] 江渝, 王恒, 郑群英, 等. 一种可调电感控制线路潮流的方法[J]. 电工技术学报, 2011, 26(9): 196-200. Jiang Yu, Wang Heng, Zheng Qunying, et al. Control method of power flow with adjustable inductor[J]. Transactions of China Electrotechnical Society, 2011, 26(9): 196-200. [14] Hong H, Zhang J, Song M, et al. Magnetization study on a new type of orthogonally configured magnetic core structure and its potential application to super- conducting controllable reactors[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5001004. [15] 田铭兴, 励庆孚. 磁饱和式可控电抗器的等效电路及仿真分析[J]. 电工技术学报, 2003, 18(6): 64-67. Tian Mingxing, Li Qingfu. An equivalent circuit and simulation analysis of magnetically-saturated con- trollable reactors[J]. Transactions of China Electro- technical Society, 2003, 18(6): 64-67. [16] Tian M, Li Q, Li Q. A controllable reactor of transformer type[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1718-1726. [17] 朱宝森, 关毅, 陈庆国, 等. 正交磁化可控电抗器的设计与特性分析[J]. 电机与控制学报, 2012, 16(5): 26-32. Zhu Baosen, Guan Yi, Chen Qingguo, et al. Design and characteristics analysis of orthogonal magnetization controllable reactor[J]. Electric Machines and Control, 2012, 16(5): 26-32. [18] Dimitrovski A, Li Z, Ozpineci B. Applications of saturable-core reactors(SCR) in power systems[C]. IEEE PES T&D Conference and Exposition, 2014: 1-5. [19] 郑永成, 王洋, 何建国, 等. 基于磁场分割的磁导计算与磁路设计[J]. 机械与电子, 2006(7): 11-13. Zheng Yongcheng, Wang Yang, He Jianguo, et al. Permeance calculation and magnetic circuit design based on magnetic field division[J]. Machinery and Electronics, 2006(7): 11-13.