Optimal Measurement Configuration Based on Degree of Reliability and Observability
Lu Zhigang1,Zhao Hao1,Liu Xueying2,Cheng Huilin3,Tian Shasha1
1. Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province Yanshan University Qinhuangdao 066004 China 2. State Grid Jibei Electric Power Company Qinhuangdao Power Supply Compamy Qinhuangdao 066004 China 3. State Grid Shijiazhuang Power Supply Compamy Shijiazhuang 050000 China
Abstract:With the increasing development of the power system,complete absence of one or a few substations data regularly emerges,which may affect the system observability. Currently,observability analysis algorithms which only reflect the possibility of output state variables,fail to reflect numerical stability and veracity of estimation. To solve the problems,first the article combined the N-1 reliability test principle with electric betweenness to define the reliability indicators and the degree of reliability. Then,optimizing the measurement configuration to guarantee full observability of a power system when a station data is completely missing. Second,the observability of system is quantified by the degree of observability with the veracity and numerical stability indicators(obser- vability indicators). Moreover,the utilization of sensitivity theory discovered maximal influence factor of the observability indicators which combined with the past date to go on optimizing the measurement configuration. The method was applied to IEEE 14-bus and 39-bus standard test system. The simulation results verified the performance of the proposed method.
卢志刚,赵号,刘雪迎,程慧琳,田莎莎. 基于可靠度与可观度的量测优化配置研究[J]. 电工技术学报, 2014, 29(12): 180-187.
Lu Zhigang,Zhao Hao,Liu Xueying,Cheng Huilin,Tian Shasha. Optimal Measurement Configuration Based on Degree of Reliability and Observability. Transactions of China Electrotechnical Society, 2014, 29(12): 180-187.
[1] 卢志刚,李爽. 厂站量测信息不完整时的全网理论线损计算[J]. 电网技术,2007,31(16): 83-87. Lu Zhigang,Li Shuang. Theoretical network loss calculation of whole power system under incomplete injected measured data of partial plants and substations [J]. Power System Technology,2007,31(16): 83-87. [2] Milosevic B,Begovic M. Nondominated sorting genetic algorithm for optimal phasor measurement placement[J]. IEEE Transactions on Power Systems,2003,18(1): 69-75. [3] Nuqui R F,Phadke A G. Phasor measurement unit placement techniques for complete and incomplete observablity[J]. IEEE Transactions on Power Delivery,2005,20(4),2381-2388. [4] 彭疆南,孙元章,王海风. 考虑系统完全可观测性的PMU最优配置方法[J]. 电力系统自动化. 2003,27(4): 10-16. Peng Jiangnan,Sun Yuanzhang,Wang Haifeng. An optimal PMU placement algorithm for full network observability[J]. Automation of Electric Power Systems,2003,27(4): 10-16. [5] 李川江,邱国跃. 基于改进粒子群算法的PMU装置数量增加过程中的最优配置方法[J]. 继电器,2006,34(12): 52-56,68. Li Chuanjiang,Qiu Guoyue. Optimal placement algorithm of PMU based on enhanced particle swarm optimization during the increase of PMUs[J]. Relay,2006,34(12): 52-56,68. [6] Denegri G B,Invernizzi M,Milano F. A security oriented approach to PMU positioning for advanced monitoring of a transmission grid[C]. International Conference on Power System Technology,Kunming,China,2002. [7] 刘新东,江全元,曹一家. N-1条件下不失去可观测性的PMU优化配置方法[J]. 中国电机工程学报,2009,29(10): 47-51. Liu Xindong,Jiang Quanyuan,Cao Yijia. Optimal PMU placement to guarantee observability under N-1 condition[J]. Proceedings of the CSEE,2009,29(10): 47-51. [8] 陈刚,唐毅,张继红,等. 基于田口法考虑N-1情况下的PMU优化配置方法[J]. 电力系统自动化,2010,34(13): 28-32. Chen Gang,Tang Yi,Zhang Jihong,et al. Optimal PMU placement based on taguchi method considering N-1 condition[J]. Automation of Electric Power Systems,2010,34(13): 28-32. [9] 王克英,穆钢,陈学允. 计及PMU的状态估计精度分析及配置研究[J]. 中国电机工程学报,2001,21(8): 29-33. Wang Keying,Mu Gang,Chen Xueyun. Precision improvement and PMU placement studies on state estimation of a hybrid measurement system with PMUS[J]. Proceedings of the CSEE,2001,21(8): 29-33. [10] 徐林,王秀丽,王锡凡. 电气介数及其在电力系统关键线路识别中的应用[J]. 中国电机工程学报,2010,30(1): 33-39. Xu Lin,Wang Xiuli,Wang Xifan. Electric betweenness and its application in vulnerable line identification in power system[J]. Proceedings of the CSEE,2001,21(8): 29-33. [11] 徐林,王秀丽,王锡凡. 基于电气介数的电网连锁故障传播机制与积极防御[J]. 中国电机工程学报,2010,30(13): 61-68. Xu Lin,Wang Xiuli,Wang Xifan. Cascading failure mechanism in power grid based on electric betweenness and active defence[J]. Proceedings of the CSEE,2010,30(13): 61-68. [12] Taguchi G,Chowdhury S,Taguchi S. Robust enginee- ring[M]. New York,NY,USA: McGraw-Hill,2000. [13] 于尔铿. 电力系统状态估计[M]. 北京: 水利电力出版社,1985. [14] 李庆阳,王能超,易大义. 数值分析[M]. 北京: 华中理工大学出版社,2000. [15] 卢志刚,张宗伟. 基于量测函数向量线性相关的网络可观测性分析[J]. 电网技术,2007,31(17): 51-55. Lu Zhigang,Zhang Zongwei. Network observability analysis based on linear dependence between measure- ment function vectors[J]. Power System Technology,2007,31(17): 51-55.