Abstract:To overcome the problem of inherent binary-class nature and incomplete information for traditional single kernel classifier,a novel method based on multi-kernel multi-class relevance vector machine(MMRVM) is proposed for partial discharge pattern recognition. Firstly,4 different partial discharge signal features are mapped with different kernel functions to solve the problem of different data sources. Secondly,particle swarm optimization is applied for kernel parameters selection to avoid the subjectivity of parameter selection. Finally pattern recognition of partial discharge is realized by direct multi-classification with constructed model. 4 types of partial discharge signals simulated in the laboratory are analyzed with traditional single kernel SVM,RVM and MMRVM classifier effectively. Experiment results demonstrate that,MMRVM classifier combines with various kinds of partial discharge features that can comprehensively describe partial discharge features. The proposed method has higher recognition accuracy and better applicability than single kernel classifiers.
[1] 郭俊,吴广宁,张血琴,等. 局部放电检测技术的现状和发展[J]. 电工技术学报,2005,20(2): 29-35. Guo Jun,Wu Guangning,Zhang Xueqin,et al. The actuality and perspective of partial discharge detection techniques[J]. Transactions of China Electrotechnical Society,2005,20(2): 29-35. [2] Judd M D,Cleary G P,Bennoch C J. Applying UHF partial discharge detection to power transformers[J]. IEEE Power Engineering Review,2002,22(8): 57-59. [3] Mang-Hui Wang. Partial discharge pattern recognition of current transformers using an ENN[J]. IEEE Transactions on Power Delivery,2005,20(3): 1984- 1990. [4] Hao L,Lewin P L. Partial discharge source discrimina- tion using a support vector machine[J]. IEEE Transac- tions on Dielectrics and Electrical Insulation,2010,17(1): 189-197. [5] 安学利,赵明浩,蒋东翔,等. 基于支持向量机和多源信息的直驱风力发电机组故障诊断[J]. 电网技术,2011,35(4): 117-122. An Xueli,Zhao Minghao,Jiang Dongxiang,et al. Direct-drive wind turbine fault diagnosis based on support vector machine and multi-source information [J]. Power System Technology,2011,35(4): 117-122. [6] 郭创新,朱承治,张琳,等. 应用多分类多核学习支持向量机的变压器故障诊断方法[J]. 中国电机工程学报,2010,30(13): 128-134. Guo Chuangxin,Zhu Chengzhi,Zhang Lin,et al. A fault diagnosis method for power transformer based on multiclass multiple-kernel learning support vector machine[J]. Proceedings of the CSEE,2010,30(13): 128-134. [7] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research,2001,1: 211-244. [8] 尹金良,朱永利,俞国勤. 相关向量机及其在变压器故障诊断中的应用[J]. 电力自动化设备,2012,32(8): 130-134. Yin Jinliang,Zhu Yongli,Yu guoqin. Relevance vector machine and its application in transformer fault diagnosis[J]. Electric Power Automation Equipment,2012,32(8): 130-134. [9] TIPPING M E. The relevance vector machine[J]. Advances in Neural Information Processing Systems,2001(12): 652-658. [10] 周欣,吴瑛. 基于 SVM 和 RVM 的信号调制分类研究[J]. 通信学报,2010,31(8): 94-99. Zhou Xin,Wu Ying. Research on signals modulation classification based on SVM and RVM[J]. Journal on Communications,2010,31(8): 94-99. [11] 孙国强,卫志农,翟玮星. 基于RVM与ARMA误差校正的短期风速预测[J]. 电工技术学报,2012,27(8): 187-193. Sun Guoqiang,Wei Zhinong,Zhai Weixing. Short term wind speed forecasting based on RVM and ARMA error correcting[J]. Transactions of China Electrotechnical Society,2012,27(8): 187-193. [12] Damoulas T,Ying Y,Girolami M A,et al. Inferring sparse kernel combinations and relevance vectors: an application to subcellular localization of proteins[C]. Proceedings of the 7th International Conference on Machine Learning and Applications,San Diego,USA,2008. [13] Psorakis I,Damoulas T,Girolami M A. Multiclass relevance vector machines: sparsity and accuracy[J]. IEEE Transactions on Neural Networks,2010,21(10): 1588-1598. [14] Damoulas T,Girolami M A. Combining feature spaces for classification[J]. Pattern Recognition,2009,42(11): 2671-2683. [15] 李剑,王小维,金卓睿,等. 变压器局部放电超高频信号多尺度网格维数的提取与识别[J]. 电网技术,2010,34(2): 159-163. Li Jian,Wang Xiaowei,Jin Zhuorui,et al. Multi-scale grid dimension extraction and recognition of ultra- high frequency signals of transformer partial discharge [J]. Power System Technology,2010,34(2): 159-163. [16] 李天云,程思勇,李光. 基于交叉验证的局部放电白噪声抑制新方法[J]. 电工技术学报,2008,23(1): 19-23. Li Tianyun,Cheng Siyong,Li Guang. A new method to suppress white noise in PD signals based on cross validation[J]. Transactions of China Electrotechnical Society,2008,23(1): 19-23. [17] 王国利,郝艳捧,李彦明. 油中典型局部放电模型放电波形特征参数的提取[J]. 电网技术,2001,25(10): 34-37,46. Wang Guoli,Hao Yanpeng,Li Yanming. Pulse current parameter evaluation of typical partial discharge models in oil[J]. Power System Technology,2001,25(10): 34-37,46. [18] 梁帅伟,廖瑞金,杨丽君,等. 油纸绝缘老化的超宽频带局部放电信号时频域特性逐步判别分析[J]. 电网技术,2007,31(22): 38-43. Liang Shuaiwei,Liao Ruijin,Yang Lijun,et al. Stepwise discriminant analysis on time-domain and frequency-domain characteristics of ultra-wideband partial discharge signals for oil-paper insulation ageing [J]. Power System Technology,2007,31(22): 38-43. [19] Gulski E,Kreuger F H. Computer-aided recognition of discharge sources[J]. IEEE Transactions on Electrical Insulation,1992,27(1): 82-92. [20] Evagorou D,Kyprianou A,Lewin P L,et al. Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network[J]. IET Science,Measurement and Technology,2010,4(3): 177-192. [21] 荣海娜,张葛祥,金炜东. 系统辨识中支持向量机核函数及其参数的研究[J]. 系统仿真学报,2006,18(11): 3204-3208,3226. Rong Haina,Zhang Gexiang,Jin Weidong. Selection of kernel functions and parameters for support vector machines in system identification[J]. Journal of System Simulation,2006,18(11): 3204-3208,3226. [22] Ko Chianan,Chang Yingpin,Wu Chiaju. A PSO method with nonlinear time-varying evolution for optimal design of harmonic filters[J]. IEEE Transac- tions on Power Systems,2009,24(1): 437-444.