Modeling of Magnetic Properties of GO Electrical Steel Based on Epstein Combination and Loss Data Weighted Processing
Zhao Zhigang1, Zhao Xinli2, Cheng Zhiguang2, Liu Fugui1, Fan Yana2, Liu Tao2, Han Guisheng2, Wang Youhua1, Yang Qingxin3
1. Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China; 2. R & D Center Baoding Tianwei Group Co. Ltd Baoding 071056 China; 3. Tianjin Polytechnic University Tianjin 300387 China
Abstract:The extended modeling of the magnetic properties of GO(grain oriented) electrical steel is presented in this paper which is based on a set of standard and scaled-down Epstein frames and a proposed two-level weighted processing of Epstein data, including the mean magnetic path length, specific magnetization loss and exciting power. The effects of excitation frequency, strip angle and ambient temperature on the results obtained from the Epstein frames are investigated. It is shown that using the proposed Epstein combination and the two-level weighted processing method is an efficient way of building a model for determining magnetic losses more realistically, and hence improving the value of Epstein strip measurement data.
赵志刚, 赵新丽, 程志光, 刘福贵, 范亚娜, 刘涛, 韩贵胜, 汪友华, 杨庆新. 基于爱泼斯坦方圈组合和损耗加权处理技术的取向电工钢磁性能扩展模拟[J]. 电工技术学报, 2014, 29(9): 204-210.
Zhao Zhigang, Zhao Xinli, Cheng Zhiguang, Liu Fugui, Fan Yana, Liu Tao, Han Guisheng, Wang Youhua, Yang Qingxin. Modeling of Magnetic Properties of GO Electrical Steel Based on Epstein Combination and Loss Data Weighted Processing. Transactions of China Electrotechnical Society, 2014, 29(9): 204-210.
[1] Sievert J. Recent advances in the one- and two- dimensional magnetic measurement technique for electrical steel sheet[J]. IEEE Transactions on Magnetics, 1990, 26(5): 2553-2558. [2] 谢德馨, 白保东. 计算电磁学中电工钢片磁特性模型研究的新进展[J]. 沈阳工业大学学报, 2007, 29(03): 289-294. Xie Dexin, Bai Baodong. New development of magnetic property modeling electrical steel sheet in computational electromagnetics[J]. Journal of Shenyang University of Technonlogy, 2007, 29(03): 289-294. [3] Nakano M, Nishimoto H, Fujiwara K, et al. Improve- ments of single sheet tester for measurement of 2-D magnetic properties up to high flux density[J]. IEEE Transactions on Magnetics, 1999, 35(5): 3965-3967. [4] Fujiwara K, Adachi T, Takahashi N. A proposal of finite-element analysis considering two-dimensional magnetic properties[J]. IEEE Transactions Magnetics, 2002, 38(2): 889-892. [5] Zhu J, Zhong J, Lin Z, et al. Measurement of magnetic properties using 3-D magnetic excitations[J]. IEEE Transactions on Magnetics, 2003, 39(5): 3429-3431. [6] Enokizono M, Shimoji H, Ikariga A, et al. Vector magnetic characteristic analysis of electrical machines [J]. IEEE Transactions on Magnetics, 2005, 41(5): 2032-2035. [7] Li Y, Zhu J, Yang Q, et al. Measurement of SMC material using an improved 3-D tester with flexible excitation coil and novel sensing coils[J]. IEEE Transactions on Magnetics, 2010, 46(6): 1971-1974. [8] Yamamoto T, Ohya Y. Single sheet tester for measuring core losses and permeability in a silicon steel sheet[J]. IEEE Transactions on Magnetics, 1974, 10(2): 157-159. [9] Moses A J, Hamadeh S. Comparison of the Epstein frame and single strip tester for measuring the power loss of non-oriented electrical steels[J]. IEEE Transac- tions on Magnetics, 1983, 19(6): 2705-2710. [10] IEC 60404—2 AMD 1—2008: magnetic materials- Part 2: methods of measurement of the magnetic properties of electrical steel sheet and strip by means of an Epstein frame[S]. 2008. [11] IEC 60404—3—2010: Magnetic Materials - Part 3: Methods of measurement of the magnetic properties of electrical steel strip and sheet by means of a single sheet tester[S]. - Edition 2.2; Consolidated Reprint. [12] Cheng Z, Takahashi N, Forghani B, et al. Effect of variation of B-H properties on loss and flux inside silicon steel lamination[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1346-1349. [13] Zhao X, Lu J, Li L, et al. Analysis of the DC bias phenomenon by the harmonic balance finite element method[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 475-485. [14] Mthombeni T L, Pillay P, Strnat R M W. New Epstein frame for lamination core loss measurements under high frequencies and high flux densities[J]. IEEE Transactions on Energy Conversion, 2007, 22(3): 614-620. [15] Patsios C, Tsampouris E, Beniakar M, et al. Dynamic finite element hysteresis model for iron loss calculation under PWM excitation[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1130-1133. [16] Moses A J. Characterisation and performance of electrical steels for power transformers operating under extremes of magnetization conditions[C]. International Colloquium Transformer Research and Asset Manage- ment, Croatia, 2009. [17] Marketos P, Zurek S, Moses A J. Calculation of the mean path length of the Epstein frame under non- sinusoidal excitations using the double Epstein method [J]. Journal of Magnetism and Magnetic Materials, 2008(320): 2542-2545. [18] Cheng Z, Takahashi N, Forghani B, et al. Engineering- oriented benchmarking and application-based magnetic material modeling in transformer research[C]. Interna- tional Colloquium Transformer Research and Asset Management, Croatia, 2012. [19] Cheng Z, Takahashi1 N, Forghani B, et al. 3-D finite element modeling and validation of power frequency multi-shielding effect[J]. IEEE Transactions on Magne- tics, 2012, 48(2): 243-246. [20] 程志光, 高桥則雄, 博扎德•弗甘尼, 等. 电气工程电磁热场模拟与应用[M]. 北京: 科学出版社, 2009. [21] IEEE Std 1597.1 TM —2008: IEEE Standard for Valida- tion of Computational Electromagnetics Computer Modeling and Simulations[S]. [22] TEAM Benchmark Problems. [Online] available: www.compumag.org/TEAM. [23] Davies D, Moses A J. Causes of some error in measurements in grain-oriented silicon-iron using the Epstein square[J]. Journal of Magnetism and Magnetic Materials, 1982(26): 35-36.