Abstract:To improve the dynamic performance of the dual stator-winding induction generator (DWIG) variable frequency AC generation system with inductive or capacitive loads, the feed-forward loop of load reactive power is added in the previous slip frequency control strategy. According to the instantaneous power theory, the active and reactive load power are calculated to respectively control the frequency and amplitude of the output voltage of the power converter quickly by the feed-forward loop to fast regulate the reactive power in the control winding, so that the slip frequency and the air-gap flux of the DWIG are adjusted quickly. Therefore, the power balance and output voltage constant are implemented. The experimental results prove the correctness and validity of the proposed strategy.
卜飞飞, 胡育文, 黄文新, 庄圣伦, 施凯. 带感性和容性负载的定子双绕组异步电机变频交流发电系统动态性能[J]. 电工技术学报, 2014, 29(9): 54-63.
Bu Feifei, Hu Yuwen, Huang Wenxin, Zhuang Shenglun, Shi Kai. Dual Stator-Winding Induction Generator Variable Frequency AC Generation System with Inductive or Capacitive Loads. Transactions of China Electrotechnical Society, 2014, 29(9): 54-63.
[1] Emadi K, Ehsani M. Aircraft power systems: technology, state of the art, and future trends[J]. IEEE A&E Systems Magazine, 2000, 15(1): 28-32. [2] 叶杭冶. 风力发电机组的控制技术[M]. 北京: 机械工业出版社, 2002. [3] 李德孚. 我国离网型风力发电行业发展现状[J]. 可再生能源, 2009, 27(3): 4-6. Li Defu. The status of wind power generation unconnected to grid in China[J]. Renewable Energy Resources, 2009, 27(3): 4-6. [4] 陈杰, 张先进, 龚春英, 等. 基于直流电网的非并网风电系统及其控制策略[J]. 电力系统自动化, 2009, 33(10): 86-90. Chen Jie, Zhang Xianjin, Gong Chunying, et al. DC grid based non-grid-connected wind power system and its control strategy[J]. Automation of Electric Power System, 2009, 33(10): 86-90. [5] ABansal R, Bhatti T, Kothari D. Bibliography on the application of induction generators in nonconventional energy systems[J]. IEEE Transactions on Energy Conversion, 2003, 18(3): 433-439. [6] Mathur H. Discussion of “bibliography on the application of induction generators in nonconventional energy systems”[J]. IEEE Transactions on Energy Conversion, 2004, 19(3): 650-650. [7] Bansal R C, Bhatti T S, Kothari D P. Closure on “bibliography on the application of induction generators in nonconventional energy systems”[J]. IEEE Transactions on Energy Conversion, 2004, 19(3): 650-651. [8] Bansal R. Three-phase self-excited induction generators: an overview[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 292-299. [9] 马袆炜, 俞俊杰, 吴国祥, 等. 双馈风力发电系统最大功率点跟踪控制策略[J]. 电工技术学报, 2009, 24(4): 202-208. Ma Yiwei, Yu Junjie, Wu Guoxiang, et al. MPPT control strategy for doubly-fed wind power generation [J]. Transactions of China Electrotechnical Society, 2009, 24(4): 202-208. [10] Quinonez Varela G, Cruden A. Modelling and validation of a squirrel cage induction generator wind turbine during connection to the local grid[J]. IET Gener. Transm. Distrib. , 2008, 2(2): 301-309. [11] Ramirez D, Veganzones C, Blazquez F. Adaptation of floating point DSP-based technology for small variable-speed wind turbine[J]. IEEE Transactions on Energy Conversion, 2007, 22( 2): 376-382. [12] Elbuluk M, Kankan M. Potential starter/generator technologies for future aerospace applications[J]. IEEE A&E Systems Magazine, 1997, 12(5): 24-31. [13] Alan I, Lipo T A, Starter/generator employing resonant- converter-fed induction machine part I analysis[J]. IEEE Transactions on A&E Systems, 2000, 36(4): 1309-1318. [14] Alan I, Lipo T. Starter/generator employing resonant- converter-fed induction machine part II: hardware prototype[J]. IEEE Transactions on A&E Systems, 2000, 36(4): 1319-1329. [15] Leidhold R, Garcia G, Valla M. Induction generator controller based on the instantaneous reactive power theory[J]. IEEE Transactions on Energy Conversion, 2002, 17(3): 368-373. [16] Hu Y, Huang W, Li Y. A novel instantaneous torque control scheme for induction generator systems[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 795-803. [17] Ojo O, Davidson I. PWM-VSI inverter-assisted stand- alone dual stator winding induction generator[J]. IEEE Transactions on Industry Applications, 2000,[17] 1604-1611. [18] Wang D, Ma W, Xiao F, et al. A novel stand-alone deal stator-winding induction generator with static excitation regulation[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 826-835. [19] 杨青, 马伟明, 吴旭升, 等. 3/3相双绕组发电机系统的运行稳定性[J]. 中国电机工程学报, 2003, 23(4): 86-90. Yang Qing, Ma Weiming, Wu Xusheng, et al. Stability of 3/3 dual stator-winding induction generator with simultaneous AC and rectified DC load[J]. Proceedings of the CSEE, 2003, 23(4): 86-90. [20] Li Y, Hu Y, Huang W, et al. The capacity optimization for the static excitation controller of the dual-stator-winding induction generator operating in a wide speed range[J]. IEEE Transactions on Industrial Electronics, 2009, 56(2): 530-541. [21] Bu F, Huang W, Hu Y, et al. An excitation-capacitor- optimized dual stator-winding induction generator with the static excitation controller for wind power application[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 122-131. [22] 刘陵顺, 胡育文, 黄文新. 变速变负载运行的双绕组感应发电机励磁绕组无功容量优化的分析[J]. 电工技术学报, 2006, 21(3): 94-99. Liu Lingshun, Hu Yuwen, Huang Wenxin. Optimal analysis of reactive capacity of control winding for dual stator-winding induction generator operating with variable speed[J]. Transactions of China Electro- technical Society, 2006, 21(3): 94-99. [23] Bu F, Huang W, Hu Y, et al. A stand-alone dual stator-winding induction generator variable frequency AC power system[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 10-13. [24] Akagi H, Watanabe E, Aredes M. 瞬时功率理论及其在电力调节中的应用[M]. 徐政译. 北京: 机械工业出版社, 2009.