Abstract:In order to accurately recognize the broken rotor bar fault of induction motors, a novel method for fault diagnosis is proposed based on the bare-bones particle swarm optimization algorithm (BBPSO) and support vector machine(SVM), and feasible diagnostic steps and analysis are also introduced. Firstly, a fundamental-frequency filtering method based on BBPSO is proposed to eliminate the influence of fundamental wave in fault characteristic components. Then the feature vector of induction motor in different conditions is extracted with wavelet packet, by which the residual current is decomposed to series of frequency bands; and is considered as the input vector of SVM. The “one-against-one” vector machine is used to solve the multi-class classification problem, and the BBPSO and cross-validation are taken to optimize model parameters. Finally, the experiment shows that the proposed method is effective to diagnose the broken rotor bars fault of induction motors.
史丽萍, 王攀攀, 胡泳军, 韩丽. 基于骨干微粒群算法和支持向量机的电机转子断条故障诊断[J]. 电工技术学报, 2014, 29(1): 147-155.
Shi Liping, Wang Panpan, Hu Yongjun, Han Li. Broken Rotor Bar Fault Diagnosis of Induction Motors Based on Bare-Bone Particle Swarm Optimization and Support Vector Machine. Transactions of China Electrotechnical Society, 2014, 29(1): 147-155.
[1] Subhasis N, Toliyiat H A. Condition monitoring and fault diagnosis of electrical machines: a review[C]. Conference Record IEEE Industry Application Society Annual Meeting, Phoenix, AZ, 1999: 197-204. [2] Tavner P J, Penman J. Condition monitoring of electrical machines[M]. New York: Research Studies Press Ltd., Wiley, 1989. [3] 韩天, 尹忠俊, 杨邵伟. 电机转子断条故障诊断方法探讨[J]. 电力系统及其自动化学报, 2009, 21(1): 93-117. Han Tian, Yin Zhongjun, Yang Shaowei. Discussion of diagnostic methods for broken rotor bar of induction motor[J]. Proceedings of the CSU-EPSA, 2009, 21(1): 93-117. [4] Cruz S M A, Cardoso A J M, Carvalho J F S, et al. Rotor cage fault diagnosis in three-phase induction motors by Park’s vector approach[C]. Coference Record of The IEEE Industry Applications Society Annual Meeting, Orland Florida, USA, 1995: 642-646. [5] Cruz S M A, Cardoso A J M. Rotor cage fault diagnosis in three-phase induction motors by extend Park’s vector approach[J]. Electric Machines and Power Systems, 2000, 28(3): 289-299. [6] Cruz S M A, Cardoso A J M. Stator winding fault diagnosis in three-phase synchronous and asyn- chronous motors by the extend Park’s vector approach[J]. IEEE Trans on Industry Applications, 2001, 37(5): 1227-1233. [7] 马宏忠, 姚华阳, 黎华敏. 基于Hilbert模量频谱分析的异步电机转子断条故障研究[J]. 电机与控制学报, 2009, 13(3): 371-376. Ma Hongzhong, Yao Huayang, Li Huamin. Study on rotor broken-bar fault in induction motors based on spectrum analysis of Hilbert modulus[J]. Electric Machines and Control, 2009, 13(3): 371-376. [8] 刘振兴, 尹项根, 张哲. 基于瞬时功率信号频谱分析的鼠笼式异步电动机转子故障在线诊断方法[J]. 中国电机工程学报, 2003, 23(10): 148-152. Liu Zhenxing, Yin Xianggen, Zhang Zhe. On-line rotor fault diagnosis way based on spectrum analysis of instaneous power in squirrel cage induction motors[J]. Proceedings of the CSEE, 2003, 23(10): 148-152. [9] 黄进, 牛发亮, 杨家强. 基于双PQ变换的感应电机转子故障诊断[J]. 中国电机工程学报, 2006, 26(13): 135-140. Huang Jin, Niu Faliang, Yang Jiaqiang. Rotor fault diagnosis for induction motors based on the double PQ transformation[J]. Proceedings of the CSEE, 2006, 26(13): 135-140. [10] 陈昌松, 段善旭, 蔡涛, 等. 基于模糊识别的光伏发电短期预测系统[J]. 电工技术学报, 2011, 26(7): 83-89. Chen Changsong, Duan Shanxu, Cai Tao, et al. Short-term photovoltaic generation forecasting system based on fuzzy recognition[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 83-89. [11] 管春, 周雒维, 卢伟国. 基于多标签RBF神经网络的电能质量复合扰动分类方法[J]. 电工技术学报, 2011, 26(8): 198-204. Guan Chun, Zhou Luowei, Lu Weiguo. Recognition of multiple power quality disturbances using multi-label RBF neural networks[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 198-204. [12] 黄南天, 徐殿国, 刘晓胜. 基于S变换与SVM的电能质量复合扰动识别[J]. 电工技术学报, 2011, 26(10): 23-30. Huang Nantian, Xu Dianguo, Liu Xiaosheng. Identification of power quality complex disturbances based on S-transform and SVM[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 23-30. [13] Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Piscataway, New Jersey, 1995: 1942-1948. [14] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73. [15] Kennedy J. Bare bones particle swarms[C]. Proceedings of IEEE Swarm Intelligence Symposium, Indiana, USA, 2003: 80-87. [16] 许伯强, 李和明, 孙丽玲, 等. 小波分析应用于笼型异步电动机转子断条在线检测初探[J]. 中国电机工程学报, 2001, 21(11): 24-28. Xu Boqiang, Li Heming, Sun Liling, et al. The application of wavelet analysis to detect rotor bar breaking fault of squirrel cage asynchronous motor on line[J]. Proceedings of the CSEE, 2001, 21(11): 24-28. [17] 杨俊燕, 张优云, 赵荣珍. 支持向量机在机械设备振动信号趋势预测中的应用[J]. 西安交通大学学报, 2005, 39(9): 950-953. Yang Junyan, Zhang Youyun, Zhao Rongzhen. Application of support vector machines in trend prediction of vibration signal of mechanical equipment[J]. Journal of Xi’an Jiao Tong University, 2005, 39(9): 950-953.