Resonance Wireless Charging Technology in Separate Groups for the Power Battery Packs of Electric Buses
Song Xianjin1,2, Liu Guoqiang1, Zhang Chao1, Xia Hui1, ZhangRuihua1, Xu Xiaoyu3
1.Institute of Electrical Engineering, CAS Beijing 100190 China
2. University of Chinese Academy of Sciences Beijing 100049 China
3. Institute of Microelectronics of CAS Beijing 100029 China
Abstract:Electric vehicles are an important part of the new energy project that our country is promoting. The research and manufacture of their batteries and the development of management systems play an important role. At present, the existing solutions to power batteries charging are mainly wired whole vehicle charging. Magnetic resonant wireless power transmission technology is a new technology which carries out non-radiative, mid-range power transmission using the near magnetic fields based on coupled resonance phenomena. Many universities and research institutes have put forward some applicable solutions using wireless whole vehicle charging. Wireless whole vehicle charging doesn’t combine the battery energy management with power transmission. Two separate systems run separately on this occasion, and the charging efficiency is low due to the battery balancing process. Combining the features of battery power management and using fully the special ways of wireless power transmission, we proposes the integration of battery energy management and wireless charging systems, put forward some specific implementing plans, and discuss the key points of the application of the technology. This study provides new solutions to battery management design and develops new applications for wireless energy transmission technology.
宋显锦, 刘国强, 张超, 夏慧, 张瑞华, 徐小宇. 电动大巴动力电池组的谐振分组式无线充电[J]. 电工技术学报, 2013, 28(2增): 92-98.
Song Xianjin, Liu Guoqiang, Zhang Chao, Xia Hui, ZhangRuihua, Xu Xiaoyu. Resonance Wireless Charging Technology in Separate Groups for the Power Battery Packs of Electric Buses. Transactions of China Electrotechnical Society, 2013, 28(2增): 92-98.
[1] 宋永华, 阳岳希, 胡泽春. 电动汽车电池的现状及发展趋势[J]. 电网技术, 2011, 35(4): 1-7. Song Yonghua, Yang Yuexi, Hu Zechun. Present status and development trend of batteries for electric vehicles[J]. Power System Technology, 2011, 35(4): 1-7.
[2] 王丹, 续丹, 曹秉刚. 电动汽车关键技术发展综述[J]. 中国工程科学, 2013, 15(1): 68-72. Wang Dan, Xu Dan, Cao Binggang. Overview on key techniques of electric vehicle[J]. Engineering Science, 2013, 15(1): 68-72.
[3] 夏正鹏, 汪兴兴, 倪红军, 等. 电动汽车电池管理系统研究进展[J]. 电源技术, 2012, 36(7): 1052-1054. Xia Zhengpeng, Wang Xingxing, Ni Hongjun, et al. Research progress of battery management system for electric vehicle[J]. Chinese Journal of Power Sources, 2012, 36(7): 1052-1054.
[4] 姜久春. 电池管理系统的概况和发展趋势[J]. 新材料产业, 2007(8): 40-43. Jiang Jiuchun. The general situation and development trend of battery management system[J]. Advanced Materials Industry, 2007(8): 40-43.
[5] 郑敏信, 齐铂金, 吴红杰. 基于双CAN总线的电动汽车电池管理系统[J]. 汽车工程, 2008, 30(9): 188-195. Zheng Minxin, Qi Bojin, Wu Hongjie. Battery management system for electric vehicle based on dual CAN bus[J]. Automotive Engineering, 2008, 30(9): 188-195.
[6] 南金瑞, 孙逢春, 王建群. 纯电动汽车电池管理系统的设计及应用[J]. 清华大学学报, 2007, 47(S2): 1831-1834. Nan Jinrui, Sun Fengchun, Wang Jianqun. Electric vehicle battery management system[J]. Journal of Tsinghua University(Science and Technology), 2007, 47(S2): 1831-1834.
[7] 位俊雷. 用于电动汽车的超级电容器组管理系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[8] 胡银全, 刘和平, 刘平, 等. 磷酸铁锂电池组的均衡充电研究与应用分析[J]. 重庆大学学报, 2012, 35(4): 7-12. Hu Yinquan, Liu Heping, Liu Ping, et al. Equalization charging research and application of lithium iron phosphate batteries group[J]. Journal of Chongqing University, 2012, 35(4): 7-12.
[9] 孙丙香, 王丽芳, 廖承林. 混合动力车镍氢电池管理系统关键问题分析[J]. 电力电子技术, 2008, 40(10): 45-47. Sun Bingxiang, Wang Lifang, Liao Chenglin. A key problem analysis on Ni-MH battery management system for hybrid electric vehicle[J]. Power Electronics, 2008, 40(10): 45-47.
[10] 徐剑鸣, 康龙云, 温懋勤, 等. 电动汽车复合能源系统设计[J]. 电力系统自动化, 2012, 36(3): 60-64. Xu Jianming, Kang Longyun, Wen Maoqin, et al. Design of Hybrid Power System of Electric Vehicle[J]. Automation of Electric Power Systems, 2012, 36(3): 60-64.
[11] 周逢权, 连湛伟, 王晓雷, 等. 电动汽车充电站运营模式探析[J]. 电力系统保护与控制, 2010, 38(21): 63-66. Zhou Fengquan, Lian Zhanwei, Wang Xiaolei, et al. Discussion on operation mode to the electric vehicle charging station[J]. Power System Protection and Control, 2010, 38(21): 63-66.
[12] Brown W C. The History of Power Transmission by Radio Waves[J]. IEEE Trans. Microwave Theory Tech, 1984, 32(9): 1230-1242.
[13] 武瑛. 新型无接触供电系统的研究[D]. 中国科学院电工研究所博士学位论文, 2004.
[14] Aristeidis Karalis, Joannopoulos J D Soljačić Marin. Wireless non-radiative energy transfer[C]. The AIP Industrial Physics Forum, Nov. 2006.
[15] Kurs André. Power transfer through strongly coupled resonances[R]. Thesis for Master of Science in Physics, Massachusetts Institute of Technology, 2007.
[16] Imura T, Okabe H, Hori Y. Basic experimental study on helical antennas of wireless power transfer for Electric Vehicles by using magnetic resonant couplings[C]. IEEE Vehicle Power and Propulsion Conference., Dearborn, USA, 2009:936-940.
[17] Mazlouman S J, Mahanfar A, Kaminska B. Mid-range wireless energy transfer using inductive resonance for wireless sensors[J]. IEEE International Conference on Computer Design 2009, 2009: 517-522.
[18] Seung-Hwan L, Lorenz R D.Development and validation of model for 95%-efficiency 220-W wireless power transfer over a 30-cm air ap[J]. IEEE Trans. on Industry Applications, 2011, 47(6): 2495-2504.
[19] Kurs A, Moffatt R, Soljacic M.Simultaneous mid- range power transfer to multiple devices[J]. Applied Physics Letters, 2010, 96: 044102.
[20] 赵争鸣, 张艺明, 陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报, 2013, 33(3): 1-13. Zhao Zhengming, Zhang Yiming, Chen Kainan. New progress of magnetically-coupled resonant wireless power transfer technology[J]. Proceedings of the CSEE, 2013, 33(3): 1-13.
[21] 张小壮. 磁耦合谐振式无线电能传输距离特性及其实验装置研究[D]. 哈尔滨: 哈尔滨工业大学硕士学位论文, 2009.
[22] 孙跃, 田勇, 苏玉刚, 等. 电动车无线能量互充系统及其恒流控制[J]. 吉林大学学报(工学版), 2013, 43(2): 491-496. Sun Yue, Tian Yong, Su Yugang, et al. Wireless vehicle-to-vehicle power exchange system and its constant current control[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(2): 491-496.
[23] Tan Linlin, Huang Xueliang, Li Hui, et al. Study of wireless power transfer system through strongly coupled resonances[C]. International Conference on Electrical and Control Engineering, 2010: 4275-4278.
[24] 曹玲玲, 陈乾宏, 任小永, 等. 电动汽车高效率无线充电技术的研究进展[J]. 电工技术学报, 2012, 27(8): 1-13. Cao Lingling, Chen Qianhong, Ren Xiaoyong, et al. Review of the efficient wireless power transmission technique for electric vehicles[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 1-13.
[25] 中科院电工所. 无线电能传输装置的高频逆变电源及其倍频控制方法[P]. 中国: 201210378916. 1, 2012-10-09.
[26] 张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式传能系统的频率分裂特性研究[J]. 中国电机工程学报, 2012, 32(9): 167-172. Zhang Xian, Yang Qingxin, Chen Haiyan, et al. Research on characteristics of frequency splitting in electromagnetic coupling resonant power transmission systems[J]. Proceedings of the CSEE, 2012, 32(9): 167-172.
[27] 李娜, 白恺, 陈豪. 磷酸铁锂电池均衡技术综述[J]. 华北电力技术, 2012(3): 4-10. Li Na, Bai Kai, Chen Hao. Summary of equalization for LiFePO4Li-ion batteries[J]. North China Eleectric Power, 2012(3): 4-10.
[28] 徐顺刚, 钟其水, 朱仁江. 动力电池均衡充电控制策略研究[J]. 电机与控制学报, 2012, 16(2): 62-65. Xu Shungang, Zhong Qishui, Zhu Renjiang. Research of equalizing charge control strategy for power battery[J]. Electric Machines and Control, 2012, 16(2): 62-65.