Abstract:In order to improve the classification accuracy of transient stability assessment of power systems, a novel method based on local learning machine and an improved bacterial colony chemotaxis (BCC) algorithm is proposed, where local learning machine(LLM) is used to build a TSA model. Considering the possible real-time information provided by PMU, a group of system-level classification features extracted from the power system operation parameters are employed as inputs, and the stability result is used as output of the LLM model. The relationship between input and output is trained and the ideal model is obtained by applying the improved BCC combined with chaotic search strategy to determine the optimal parameters of LLM automatically. The effectiveness of the proposed method is shown by the simulation results on the New England 10-unit-39-bus power system.
顾雪平, 李扬, 吴献吉. 基于局部学习机和细菌群体趋药性算法的电力系统暂态稳定评估[J]. 电工技术学报, 2013, 28(10): 271-279.
Gu Xueping, Li Yang, Wu Xianji. Transient Stability Assessment of Power Systems Based on Local Learning Machine and Bacterial Colony Chemotaxis Algorithm. Transactions of China Electrotechnical Society, 2013, 28(10): 271-279.
[1] 王同文, 管霖, 张尧. 人工智能技术在电网稳定评估中的应用综述[J]. 电网技术, 2009, 33(12): 60-65. Wang Tongwen, Guan Lin, Zhang Yao. A survey on application of artificial intelligence technology in power system stability assessment[J]. Power System Technology, 2009, 33(12): 60-65. [2] 顾雪平, 张文朝. 基于Tabu搜索技术的暂态稳定分类神经网络的输入特征选择[J]. 中国电机工程学报, 2002, 22(7): 66-70. Gu Xueping, Zhang Wenchao. Feature selection by Tabu search for neural-network based transient stability classification[J]. Proceedings of the CSEE, 2002, 22(7): 66-70. [3] 王同文, 管霖. 基于模式发现的电力系统稳定评估和规则提取[J]. 中国电机工程学报, 2007, 27(19): 25-31. Wang Tongwen, Guan Lin. Power system stability assessment and rule extraction based on pattern discovery[J]. Proceedings of the CSEE, 2007, 27(19): 25-31. [4] 叶圣永, 王晓茹, 刘志刚, 等. 基于支持向量机的暂态稳定评估双阶段特征选择[J]. 中国电机工程学报, 2010, 30(31): 28-34. Ye Shengyong, Wang Xiaoru, Liu Zhigang, et al. Dual-stage feature selection for transient stability assessment based on support vector machine[J]. Proceedings of the CSEE, 2010, 30(31): 28-34. [5] Gomez F R, Rajapakse A D, Annakkage U D, et al. Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1474-1483. [6] N Amjady, S A Banihashemi. Transient stability prediction of power systems by a new synchronism status index and hybrid classifier[J]. IET Generation, Transmission & Distribution, 2010, 4(4): 509-518. [7] Xu Y, Dong Z Y, Meng K, et al. Real-time transient stability assessment model using extreme learning machine[J]. IET Generation, Transmission & Distribution, 2011, 5(3): 314-322. [8] 叶圣永, 王晓茹, 周曙, 等. 基于马尔可夫链蒙特卡罗方法的电力系统暂态稳定概率评估[J]. 电工技术学报, 2012, 27(6): 168-174. Ye Shengyong, Wang Xiaoru, Zhou Shu, et al. Power system probabilistic transient stability assessment based on Markov Chain Monte Carlo method[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 168-174. [9] Yijun Sun, Sinisa Todorovic, Steve Goodison. Local-learning-based feature selection for high-dimensional data analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1610-1626. [10] 曾鸣, 吕春泉, 田廓, 等. 基于细菌群落趋药性优化的最小二乘支持向量机短期负荷预测方法[J]. 中国电机工程学报, 2011, 31(34): 93-99. [11] D H WolPert, W G Macready. No free lunch theorems for optimization[J]. IEEE Transactions on Evolu- tionary Computation, 1997, 1(1): 67-82. [12] 刘自发, 张建华. 一种求解电力经济负荷分配问题的改进微分进化算法[J]. 中国电机工程学报, 2008, 28(10): 100-105. Liu Zifa, Zhang Jianhua. An improved differential evolution algorithm for economic dispatch of power systems[J]. Proceedings of the CSEE, 2008, 28(10): 100-105. [13] 姚静, 方彦军, 陈广. 遗传和禁忌搜索混合算法在机组负荷分配中的应用[J]. 中国电机工程学报, 2010, 30(26): 95-100. Yao Jing, Fang Yanjun, Chen Guang. Genetic-tabu search hybrid algorithm for unit economic load dispatch[J]. Proceedings of the CSEE, 2010, 30(26): 95-100.