Abstract:Considering the uncertainty of the distributed generation (DG) output and the load, a distribution network multi-objective coordinated planning incorporating DG is presented. According to the probability density function, multi-state models of wind generation, photovoltaic(PV) generation and load are established respectively, then the multi-state model of the distribution system can be proposed. A multi-objective coordinated planning model of distribution network with DG based on the chance constrained programming is put forward, which take the minimization of equipment investment costs, system power losses, interruption costs and power purchasing costs as objectives. The multi-objective optimization is converted into the single-objective optimization by weighting method. The decision variables such as DG position and capacity, rewiring and attending new load are optimized by genetic algorithm using hybrid coding. The example simulation results show that the economic and technical benefit are effectively improved by synthetical planning of DG and the distribution network on the basis of chance constrained programming, meanwhile the reference values of confidence level are given and the influences of PV unit cost on planning scheme are illustrated through sensitivity analyzing.
白牧可, 唐巍, 张璐, 所丽. 基于机会约束规划的DG与配电网架多目标协调规划[J]. 电工技术学报, 2013, 28(10): 346-354.
Bai Muke, Tang Wei, Zhang Lu, Suo Li. Multi-Objective Coordinated Planning of Distribution Network Incorporating Distributed Generation Based on Chance Constrained Programming. Transactions of China Electrotechnical Society, 2013, 28(10): 346-354.
[1] 王伟, 孙昶辉, 吴子平, 等. 含分布式发电系统的微网技术研究综述[J]. 电网技术, 2009, 33(9): 14-18. Wang Wei, Sun Changhui, Wu Ziping . A review on microgrid technology containing distributed generation system[J]. Power System Technology, 2009, 33(9): 14-18. [2] Caisheng Wang, M H Nehrir. Analytical approaches for optimal placement of distributed generation sources in power systems[J]. IEEE Transactions on Power Systems, 2004, 19(4): 2068-2076. [3] 林霞, 陆于平, 王联合. 分布式发电条件下的多电源故障区域定位新方法[J]. 电工技术学报, 2008, 23(11): 139-146. Lin Xia, Lu Yuping, Wang Lianhe. New fault region location scheme in distribution system with DGs[J]. Transactions of China Electrotechnical Society, 2008, 23(11): 139-146. [4] 王成山, 陈恺, 谢莹华, 等. 配电网扩展规划中分布式电源的选址和定容[J]. 电力系统自动化, 2006, 30(3): 38-43. Wang Chengshan, Chen Kai, Xie Yinghua, et al. Sitting and sizing of distributed generation in distribution network expansion planning[J]. Automation of Electric Power Systems, 2006, 30(3): 38-43. [5] 徐玉琴, 李雪冬, 张继刚, 等. 考虑分布式发电的配电网规划问题的研究[J]. 电力系统保护与控制, 2011, 39(1): 87-91, 117. Xu Yuqin, Li Xuedong, Zhang Jigang, et al. Research on distribution network planning considering DGs [J]. Power System Protection and Control, 2011, 39(1): 87-91, 117. [6] 王志群, 朱守真, 周双喜, 等. 分布式发电对配电网电压分布的影响[J]. 电力系统自动化, 2004, 28(16): 56-60. Wang Zhiqun, Zhu Shouzhen , Zhou Shuangxi, et al. Impacts of distributed generation on distribution system voltage profile [J]. Automation of Electric Power Systems, 2004, 28(16): 56-60. [7] 刘学平, 刘天琪, 王剑. 基于小生境的配电网多目标分布式电源规划[J]. 电网技术, 2010, 34(10): 126-130. Liu Xueping, Liu Tianqi, Wang Jian. Niche-based multi-objective distributed generators planning in distribution network [J]. Power System Technology, 2010, 34(10): 126-130 [8] Tuba Gözel, M Hakan Hocaoglu. An analytical method for the sizing and siting of distributed generators in radial systems[J]. Electric Power Systems Research, 2009, 79(6): 912-918. [9] Celli G, Pilo F. Optimal distributed generation allocation in MV distribution networks[C]. 22nd IEEE Power Engineering Soeiety International Conferenee, 2001: 81-86. [10] Karki R, Hu P, Billinton R. A simplified wind power generation model for reliability evaluation[J] . IEEE Transactions on Energy Conversion, 2006, 21(2): 533-540. [11] Abouzahr I, Ramakumar R. An approach to assess the performance of utility-interactive photovoltaic systems[J]. IEEE Transactions Oil Energy Conversion, 1993, 8(2): 145-153. [12] Karaki S H, Chedid R B, Ramadan R. Probabilistie performance assessment of autonomous solar-wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 766-772. [13] Zhang P, Lee S T. Probabilistic load flow computation using the method of combined cumulant and Gram-Charlier expansion[J]. IEEE Transactions on Power Systems, 2004, 19(1): 676-682. [14] 刘波, 张焰, 杨娜. 改进的粒子群优化算法在分布式电源选址和定容中的应用[J]. 电工技术学报, 2008, 23(2): 103-108. Liu Bo, Zhang Yan, Yang Na. Improved particle swarm optimization method and its application in the siting and sizing of distributed generation planning[J]. Transactions of China Electrotechnical Society, 2008, 23(2): 103-108. [15] 王瑞琪, 李珂, 张承慧, 等. 基于多目标混沌量子遗传算法的分布式电源规划[J]. 电网技术, 2011, 35(12): 183-189. Wang Ruiqi, Li Ke, Zhang Chenghui, et al. Distributed generation planning based on multi-objective chaotic quantum genetic algorithm [J]. Power System Technology, 2011, 35(12): 183-189. [16] 麻秀范, 崔换君. 改进遗传算法在含分布式电源的配电网规划中的应用[J]. 电工技术学报, 2011, 26(3): 103-108. Ma Xiufan, Cui Huanjun. An improved genetic algorithm for distribution network planning with distributed generation [J]. Transactions of China Electrotechnical Society, 2011, 26(3): 103-108. [17] 张立梅, 唐巍. 计及分布式电源的配电网前推回代潮流计算[J]. 电工技术学报, 2010, 25(8): 123-130. Zhang Limei, Tang Wei. Back/forward sweep power flow calculation method of distribution networks with DGs[J]. Transactions of China Electrotechnical Society, 2010, 25(8): 123-130. [18] 张立梅, 唐巍, 王少林, 等. 综合考虑配电公司及独立发电商利益的分布式电源规划[J]. 电力系统自动化, 2011, 35(4): 23-28. Zhang Limei, Tang Wei, Wang Shaolin, et al. Distributed generators planning considering benefits for distribution power company and independent power suppliers[J]. Automation of Electric Power Systems, 2011, 35(4): 23-28.