Design Optimization and Verification on the Power Transmitting Coil in the High-Power Wireless Power Transmission System
Zhang Xian1, Yang Qingxin1, 2, Cui Yulong2, Liu Huijun3, Jin Liang1
1. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tianjin Polytechnic University Tianjin 300387 China 2. Beijing University of Chemical Technology Beijing 100029 China 3. Baoding Hongri Electric Co., Ltd. Baoding 071051 China
Abstract:How to design and optimize the electromagnetic coils reasonably is one of the key questions that need to be solved when design a wireless power transmission system. In this paper, a direct field-circuit coupling model is proposed. The overall trend of magnetic field in space and electrical parameters in circuits are simulated so that guiding principles about coil design are obtained. Then according to the characteristics of high power electromagnetic resonant coupling system, coils with different structures are designed, simulated and validated by experiments. It is shown that disc shaped parallel winding coil has a lower inductance and a higher resonant frequency than the other two types. And it is more suitable working as the transmitting coil form that magnetic field strength is higher on the central axis direction and radial direction. Meantime, the blindness of design and test can be avoided by using the method.
张献, 杨庆新, 崔玉龙, 刘会军, 金亮. 大功率无线电能传输系统能量发射线圈设计、优化与验证[J]. 电工技术学报, 2013, 28(10): 12-18.
Zhang Xian, Yang Qingxin, Cui Yulong, Liu Huijun, Jin Liang. Design Optimization and Verification on the Power Transmitting Coil in the High-Power Wireless Power Transmission System. Transactions of China Electrotechnical Society, 2013, 28(10): 12-18.
[1] 杨庆新, 陈海燕, 徐桂芝, 等. 无接触电能传输技术的研究进展[J]. 电工技术学报, 2010, 25(7): 6-13. [2] Yang Qingxin, Xu Guizhi, Jin Jianqiang, et al. Optimal design of energy transmission system for implantable device base on WiTricity[C]. Proceedings of the 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC), 2010: 1. [3] 张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J]. 中国电机工程学报, 2012, 32(21): 153-158. [4] 张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式传能系的频率分裂特性研究[J]. 中国电机工程学报, 2012, 32(9): 167-172. [5] Elliott G, Raabe S, Covic G A, et al. Multiphase pickups for large lateral tolerance contactless power-transfer systems[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1590-1598. [6] 孙跃, 夏晨阳, 戴欣, 等. 感应耦合电能传输系统互感耦合参数的分析与优化[J].中国电机工程学报, 2010, 30(33): 44-50. [7] Karalis Aristeidis, Joannopoulos J D, Soljacic Marin. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Phisics, 2008, 3(23): 34-48. [8] C Bin, Z Yongxin, Z Kai, et al. The design of a wireless power transmission mechanism for locomotion in active medical inspection MEMS[C]. Proceedings of the 2008 5th IEEE International Symposium on Embedded Computing(SEC '08), 2008: 382-387. [9] Kurschner D, Rathge C. Integrated contactless power transmission systems with high positioning flexibility[C]. Proceedings of the 2008 13th Power Electronics and Motion Control Conference (EPE-PEMC2008), 2008: 1696-1703. [10] 张献. 基于电磁电磁-机械同步共振的无线电能传输与转换方法研究[D]. 河北工业大学, 2012. [11] 武瑛, 严陆光, 徐善纲. 新型无接触电能传输系统的稳定性分析[J]. 中国电机工程学报, 2004, 24(5): 63-66. [12] 杨庆新, 刘素贞, 陈海燕, 等. 工程电磁场无单元法[M]. 北京: 科学出版社, 2008.