Abstract:As an electric light source which has high luminous efficiency and long life time, electrodeless lamp system consists of electronic ballast as its power source and bubble. Complicated relationship exists between the output characteristic of electronic ballast and impedance characteristic of bubble, which decides the performance, including starting speed and luminous efficiency of electrodeless lamp system. To model and analyze the electrodeless lamp system, firstly in this paper, an experimental platform was built, the impedance characteristic of bubble under 2.65 MHz was measured. Secondly, based on the circuit topology of electronic ballast, the mathematical model between the series-resonant-parallel-load output stage parameters of electronic ballast and its output voltage is proposed, and the state variables of the output stage are analyzed, and the analytical solutions of the output voltage and output current of electronic ballast in association with relevant boundary conditions are found. Finally, numerical calculation, Pspice simulation and experiment were implemented. All of the three results agree well, which validates the accuracy of the model and analysis.
[1] Wharmby D O. Electrodeless lamps for lighting: a review[J]. IEE Proceedings A, Science, Measurement and Technology, 1993, 140(6): 465-473. [2] 陈育明, 陈大华, 李维德, 等. LVD无极灯[M]. 上海: 复旦大学出版社, 2009. [3] Marian K K, Wojciech S. Electronic ballast for fluorescent lamps[J]. IEEE Transactions on Power Electronics, 1993, 8(4): 386-395. [4] Huang C M, Liang T J, Lin R L, et al. A novel constant power control circuit for HID electronic ballast[J]. IEEE Transactions on Power Electronics, 2007, 22(5): 1573-1582. [5] Liang T J, Huang C M, Chen J F, et al. Two-stage high-power-factor electronic ballast for metal-halide lamps[J]. IEEE Transactions on Power Electronics, 2009, 24(12): 2959-2966. [6] Lin R L, Wang Z Q. 2. 65 MHz self-oscillating electronic ballast with constant-lamp-current control for metal halide lamp[J]. IEEE Transactions on Power Electronics, 2007, 22(3): 839-844. [7] 刘晨阳, 张仲超. 自激电子镇流器非线性控制特性的研究[J]. 电工技术学报, 2003, 18(5): 91-96. Liu Chenyang, Zhang Zhongchao. Nonlinear control characteristic research of self-oscillating electronic ballast[J]. Transactions of China Electrotechnical Society, 2003, 18(5): 91-96. [8] 吕晓东, 邓焰, 何湘宁. 一种直流母线式HID电子镇流器及其系统[J]. 电工技术学报, 2004, 19(11): 90-93. Lü Xiaodong, Deng Yan, He Xiangning. A HID ballast system with DC bus[J]. Transactions of China Electrotechnical Society, 2004, 19(11): 90-93. [9] 姜轶峰, 陈敏, 梁伟霞, 等. 一种基于T型滤波器的调光型超高频电子镇流器[J]. 电工技术学报, 2005, 20(12): 106-110. Jiang Yifeng, Chen Min, Liang Weixia, et al. Dimmable UHF electronic ballast based on T type filter[J]. Transactions of China Electrotechnical Society, 2005, 20(12): 106-110. [10] 方宇, 谢勇. 电子镇流器中谐振逆变器建模方法研究[J]. 电力电子技术, 2006, 40(5): 98-100. Fang Yu, Xie Yong. Modeling method for resonant inverter applied to electronic ballast[J]. Power Electronics, 2006, 40(5): 98-100. [11] 杨华, 徐殿国, 郎永强. 一种小功率低压钠灯数字电子镇流器的设计[J]. 电工技术学报, 2007, 22(8): 80-83. Yang Hua, Xu Dianguo, Lang Yongqiang. A design of low power digital electric ballast for low pressure sodium lamp[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 80-83. [12] 陈亚爱, 张卫平, 张东辉, 等. 新型MH灯用单级逆变器[J]. 电工技术学报, 2009, 24(8): 95-100. Chen Yaai, Zhang Weiping, Zhang Donghui, et al. Study of a novel single stage inverter for MH lamps[J]. Transactions of China Electrotechnical Society, 2009, 24(8): 95-100. [13] 邵明松, 黄松岭, 赵伟, 等. 2.65MHz无极灯电子镇流器的参数优化[J]. 清华大学学报(自然科学版), 2011, 51(7), 928-932. Shao Mingsong, Huang song Ling, Zhao Wei, et al. Parameter optimization for 2.65MHz electrodeless ballast[J]. Journal of Tsinghua University, Science and Technology, 2011, 51(7), 928-932. [14] Louis R N. Mathematical modeling and optimization of the electrodeless discharge system[C]. Proceedings of the 24th IEEE Power Electronics Specialists Conference, Seattle: IEEE Press, 1993: 509-514. [15] Louis R N. Optimization of electrodeless systems[D]. Cleveland: Cleveland State University, 1995. [16] Stokes A D. Induction-field calculations and their application to measurements of conductivity distributions in cylindrical plasma[J]. Proceedings of the Institution of Electrical Engineers, 1965, 112(8): 1583-1588. [17] Henriksen B B, Keefer D R, Clarkson M H. Electromagnetic field in electrodeless discharge[J]. Journal of Applied Physics, 1971, 42(13): 5460-5464. [18] Eckert H U. The induction arc: a state-of-the-art review[J]. High Temperature Science, 1974, 6, 99-134. [19] Denneman J W. Determination of electromagnetic properties of low-pressure electrodeless inductive discharges[J]. Journal of Applied Physics, 1990, 23: 293-298. [20] Lister G G. Modeling of inductively coupled discharges with internal and external coils[J]. Plasma Sources Scienec Technology, 1992, 1: 67-73. [21] Piejak R B, Godyak V A, Alexandrovich B M. A simple analysis of an inductive RF discharge[J]. Plasma Sources Scienec Technology, 1992, 1: 179-186. [22] 张贵新, 董晋阳, 王长全. 放电参数对无极灯发光特性的影响[J]. 高电压技术, 2011, 37(3): 770-777. Zhang Guixin, Dong Jinyang, Wang Changquan. Influence of discharge parameters on the luminescence characteristics of electrodeless discharge lamps[J]. High Voltage Engineering, 2011, 37(3): 770-777. [23] Louis R N. Analytical solutions of the class D inverter[C]. Proceedings of the IEEE International Symposium on Circuit and System. 2008: 1268-1271.