Abstract:The current sharing temperature and temperature margin are key factors to effect the steady operation of cable-in-conduit conductor (CICC). In response to impact of magnet fields above 10T, the Nb3Sn-based CICC has been applied to the central solenoid and toroidal field of international thermal-nuclear experimental reactor. However, the current sharing temperature and temperature margin of Nb3Sn-based conductor with strain ate not been explored. According to the measured data of the current sharing temperature and temperature margin of toroidal field sample in SULTAN, the CICC stability increase caused by improvement of the current sharing temperature and temperature margin is analyzed without strain. Then, with the periodic load to simulate strain, the deterioration of the current sharing temperature and temperature margin is obtained after 600 cycles and 1000 cycles. Finally, based on assumptions and reasoning, the evolution model of current sharing temperature and temperature margin is built with double logarithm, which can well describe the performance degradation of the Chinese toroidal field sample (TFCN) resulted from bending strain by the periodic load.
蒋华伟, 武松涛, 李国平, 赵玉娟. 应变下Nb3Sn基CICC温度分布变化模型[J]. 电工技术学报, 2012, 27(7): 169-173.
Jiang Huawei, Wu Songtao, Li Guoping, Zhao Yujuan. Temperature Distribution Model of Nb3Sn-based CICC with Strain. Transactions of China Electrotechnical Society, 2012, 27(7): 169-173.
[1] Dresener L. Twenty years of cable-in-conduit conductors :1975-1995[J]. Journal of Fusion Eneryg, 1995, 14(1): 3-12. [2] Seeber B. Hand book of applied superconductivity[M]. London: Institute of Physics Publication, 1998. [3] Yan L G. Recent progress of superconducting magnet technology in China[J]. IEEE Transaction on Applied Superconductivity, 2010, 20(3): 123-134. [4] Ciazynski D. Review of Nb3Snsuperconductors for ITER [J]. Fusion Engineering Design, 2007, 82(2-3): 488-497. [5] Liu B, Wu Y, Liu F, et al. Axial strain characterization of the Nb3Sn strand used for China's TF conductor [J]. Fusion Engineering Design, 2011, 86(1): 1-4. [6] 刘方, 翁佩德, 武玉, 等. 超导股线Nb3Sn的性能测试研究[J]. 低温物理学报, 2007, 29(1): 68-72. Liu Fang, Weng Peide, Wu Yu, et al. Study on the performance test of superconducting strand Nb3Sn [J]. Chinese Journal of Low Temperature Physics, 2007, 29(1): 68-72. [7] Zhang P X, Liang M, Tang X D, et al. Strain influence on Jc behavior of Nb3Sn multifilamentary strands fabricated by internal tin process for ITER[J]. Physica C, 2008, 468(15-20): 1843-1846. [8] 梁明, 张平祥, 唐先德. 应变对Nb3Sn多芯股线载流能力的影响析[J]. 金属学报, 2009, 45(2): 223-226 Liang Ming, Zhang Pingxiang, Tang Xiande. Strain effect on transport properties of Nb3Sn multifilament strands prepared by internal tin toute[J]. Acta Metallurgica Sinica, 2009, 45(2): 223-226. [9] 程军胜, 王秋良, 戴银明. 低温超导体Nb3Sn扩散热处理中显微组织的表征与分析[J] .稀有金属材料与工程, 2008, 37(S4): 189-192. Cheng Junsheng, Wang Qiuliang, Dai Yinming. Characterization and analysis of microstructures of Nb3Sn multifilamentary superconductors during diffusion treatment by bronze route [J]. Rare Metal Materials and Engineering, 2008, 37(S4): 189-192. [10] 王秋良. 高磁场超导磁体科学[M]. 北京: 科学出版社. 2008. [11] Breschi M, Corato V, Fiamozzi C, et al. Analysis of transverse resistance measurements in Nb3Sn superconducting wires[J]. IEEE Transaction on Applied Superconductivity, 2011, 21(3): 2372-2375. [12] Miyoshi Y, Ilyin Y, Abbas, et al. AC Loss, inter-strand resistance, and mechanical properties of an option-II ITER CICC up to 30, 000 cycles in the press[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1944-1947. [13] 蒋华伟, 武松涛. 应变下管内电缆导体交流损耗计算模型[J]. 中国科学: 技术科学, 2012, 42(5): 576-583. Jiang Huawei, Wu Songtao. Calculation model of AC loss for CICC(cable-in-conduit conductor)based on strain[J]. Science China Technological Sciences, 2012, 55(4): 1132-1139. [14] 蒋华伟, 武松涛, 成俊生. 管内电缆导体结构模拟设计优化模型[J]. 科学通报, 2011, 56(6): 440-445. Jiang Huawei, Wu Sogntao, Cheng Junsheng. Optimization model of a structural simulation design for a CICC[J]. Chinese Science Bulletin, 2011, 56(27): 2978-2983. [15] Bottura L, Luongo C. Superconductors, stability in forced flow. In: John G W, ed. wiley encyclopedia of electrical and electronic engineering[M]. Milton: John Wiley & Sons, 1999. [16] 方进. HT-7U管内电缆导体的稳定性理论及实验研究[D]. 合肥: 中国科学院等离子体物理研究所, 2002. [17] Wesche R, Bagnasco M, Bruzzone P, et al. Results of conductor testing in SULTAN: a review[C]. Proceedings of the IEE WAMSDO-Accelerator Magnet Superconductors, Design and Optimization, 2009: 68-77.