Abstract:This paper studies a large-scale linear power system model reduction problem using the balanced truncation and residualization method. The process of model reduction is based on an approximations solution of the Lyapunov equation. First,the Lyapunov equation is solved by the alternating direction implicit (ADI) method; then,using the Cholesky factors of the controllability and observability gramians,the balancing transformation matrix and the Hankel singular values of power system dynamic model. Next,the reduction models of power system are obtained by the above proposed method are calculnted. Finally,the four-generator test power system and IEEE 50-generator test power system are analyzed for model reduction by the proposed method,and some simulating curves are given on the Dymola platform. The results of simulation show that the proposed method is very efficient.
赵洪山,李志为,兰晓明,时宁. 平衡格莱姆方法在电力系统线性模型降阶中的应用[J]. 电工技术学报, 2013, 28(7): 201-207.
Zhang Zhe,Zhao Hongshan,Li Zhiwei,Lan Xiaoming,Shi Ning. Power System Linear Model Reduction Based on the Balanced Gramian Method. Transactions of China Electrotechnical Society, 2013, 28(7): 201-207.
[1] Sanchez-Gasca J, Chow J H. Computation of power system low order models from time domain simulation using a Hankel matrix[J]. IEEE Transactions on Power Systems, 1997, 12(4): 1461-1467. [2] Martins N, Silva F G, Pellanda P C. Utilizing transfer function modal equivalents of low-order for the design of power oscillation damping controllers in large power systems[C]. Proceedings of IEEE Power Engineering. Society. Meeting, 2005: 2642-2648. [3] Martins N, Lima L T G, Pinto H J C P. Computing dominant poles of power system transfer functions[J], IEEE Transactions on Power Systems, 1996, 11(1): 162-170. [4] Enrico De Tuglie, Silvio Marcello Iannone, Francesco Torelli. A coherency recognition based on structural decomposition procedure[J]. IEEE Transaction on Power Systems, 2008, 23(2): 555-563. [5] Kokotovic P V, Avramovic B, Chow J H, et al. Coherency based decomposition and aggregation[J]. Automatica, 1982, 18(1): 47-56. [6] 文俊, 刘天琪, 李兴源, 等. 在线识别同调机群的优化支持向量机算法[J], 中国电机工程学报, 2008, 28(25): 80-85. Wen Jun, Liu Tianqi, Li Xingyuan, et al. On-line identification of coherent generator using optimized LS-SVM[J]. Proceedings of the CSEE, 2008, 28(25): 80-85. [7] 安军, 穆钢, 徐炜彬. 基于主成分分析法的电力系统同调机群识别[J]. 电网技术, 2009, 33(3): 25-28. An Jun, Mu Gang, Xu Weibin. Recognition of power system coherent generators based on principal component analysis[J]. Power System Technology, 2009, 33(3): 25-28. [8] Zecevic A L, Gacic N. An algorithm for model reduction in large electric power systems[J]. Mathe- metical Problems in Engineering, 1998, 4(1): 43-58. [9] 李芳, 郭剑, 吴中习, 等. 基于PC机群的电力系统小干扰稳定分布式并行算法[J]. 中国电机工程学报, 2007, 27(31): 7-13. Li Fang, Guo Jian, Wu Zhongxi, et al. Distributed parallel computing algorithms for power system small signal stability based on PC clusters[J]. Proceedings of the CSEE, 2007, 27(31): 7-13. [10] Kokotovic P V, Sauer P W. Integral manifold as a tool for reduced order modeling of nonlinear system: a synch ronous machine case study[J]. IEEE Transac- tions on Circuit and Systems, 1989, 36(3): 403-410. [11] 刘永强, 严正, 倪以信, 等. 双时间尺度电力系统动态模型降阶研究(一)电力系统奇异摄动模型[J]. 电力系统自动化, 2002, 26(18): 1-5. Liu Yongqiang, Yan Zheng, Ni Yixin, et al. Study on the order reduction of two-time scale power system dynamic models: part one power system singular perturbation model[J]. Automation of Electric Power Systems, 2002, 26(18): 1-5. [12] 刘永强, 严正, 倪以信, 等. 双时间尺度电力系统动态模式降阶研究(二)系统降阶与分析[J]. 电力系统自动化, 2002, 26(19): 1-6. Liu Yongqiang, Yan Zheng, Ni Yixin, et al. Study on the order reduction of two-time scale power system dynamic models: part two order reduction and a nalysis[J]. Automation of Electric Power Systems, 2002, 26(19): 1-6. [13] Martins N, Lima L G, Pinto H P. Computing dominant poles of power system transfer functions[J]. IEEE Transactions on Power Systems, 1996, 11(1): 162- 170. [14] Martins N, Quintao P E. Computing dominant poles of power system multivariable transfer functions[J]. IEEE Transactions on Power Systems, 2003, 18(1): 152-159. [15] Chaniotis D, Pai M A. Model reduction in power systems using Krylov subspace methods[J]. IEEE Transaction on Power Systems, 2005, 20(2): 888-894. [16] 赵洪山, 宋国维, 江全元. 利用平衡理论进行电力系统模型降阶[J]. 电工技术学报, 2010, 25(2): 127- 133. Zhao Hongshan, Song Guowei, Jiang Quanyuan. Reduction of power system model using balanced realization method [J]. Transactions of China Electrotechnical Society, 2010, 25(2): 127-133. [17] Penzl T. A cyclic low-rank Smith method for large-scale Lyapunov equations[J]. SIAM Journal on Scientific Computing, 2000, 2(4): 1401-1418. [18] Li J R, White J. Low-rank solution of Lyapunov equations[J]. SIAM Journal on Matrix Analysis Applica-tions, 2002, 24: 260-280. [19] Neriman P, Erkan A. A correlation based approach for generator model reduction[J]. Journal of Electrical Electronics, 2001, 1(2): 317-325. [20] Penzl T. Lyapack#x02014;a matlab toolbox for large Lyapunov and Riccati Equations, model reduction problems, and linear-quadratic optimal control problems [EB]. 1999. [21] Francisco Damasceno, Joost Rommes, Nelson Martins. Gramian-based reduction method applied to large sparse power system descriptor models[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1258-1270. [22] Kundur P. Power system control and stability[M]. New York: Mc-Graw-Hill, 1994.