Abstract:The active magnetic bearing system is a complex nonlinear system and the system parameters often change with time. In this paper, the adaptive control and sliding mode control are combined to establish an adaptive sliding mode controller (ASMC) which is applied to a single degree of freedom magnetic bearing controlling system. With the system parameters changing the real-time control system can change the corresponding control parameters to make the system performance always maintain the optimal or nearly optimal. The simulation model of the single degree of freedom magnetic bearing based on ASMC and an experimental platform using PC as upper computer and TMS320F2812 as hypogyny are established. The simulation and experimental results show that the ASMS not only weaken the inherent chattering in the sliding mode control, but also has better robustness and rapidity. It can meet the real-time control requirements of the magnetic bearing system.
楼晓春, 吴国庆. 主动磁轴承系统的自适应滑模控制[J]. 电工技术学报, 2012, 27(1): 142-147.
Lou Xiaochun, Wu Guoqing. Adaptive Sliding Mode Control for an Active Magnetic Bearing System. Transactions of China Electrotechnical Society, 2012, 27(1): 142-147.
[1] 虞烈. 可控磁悬浮转子系统[M]. 北京: 科学出版社, 2003. [2] Allaire P, Sinha A. Robust sliding mode control of a planar rigid rotor system on magnetic bearings[C]. Proceedings of the 6th International Symposium on Magnetic Bearings, Boston, 1998: 577-586. [3] Yu S S, Wu S J, Lee T. Application of neural-fuzzy modeling and optimal fuzzy contloller for nonlinear magnetic bearing systems[C]. IEEE/ASME Intemational Conference on Advanced Intelligent Mechatmnics, 2003: 134-136. [4] Leej H, Paul E Allaire. Experimental study of sliding mode control for a benchmark magnetic bearing system and artificial heart pump suspension[J]. IEEE Transactions on Control Systems Technology, 2003: 11(1): 128-138. [5] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京: 清华大学出版社, 2005. [6] Duan G R, Wu Z Y, Chris B, et a1. Robust magnetic bearing control using stabilizing dynamical compensators[J]. IEEE Transactions on Industry Applications, 2000, 36(6): 1654-1660. [7] Slotine J J E, Coetsee J A. Adaptive sliding controller synthesis for non-linear systems [J]. INT. J. Control, 1986, 43(6): 1631-1665. [8] Chen M Y, Lin T B, Huang S G, et al. Design, analysis and control of an electro-magnetic actuator[C]. American Control Conf, 2003: 1233-1238. [9] 张纲. 磁悬浮轴承一转子系统的机电耦合动力学研究[D]. 西安: 西安交通大学, 1999. [10] 胡业发, 周祖德, 江征风. 磁力轴承的基础理论与应用[M]. 北京: 机械工业出版社, 2006. [11] 吴国庆. 用于数控机床的磁悬浮支承系统及其控制技术[D]. 上海: 上海大学, 2006.