Abstract:Based on modulation theorem, theoretical study was carried out to obtain the input power fluctuation of the fluorescent lamp (FL) with self-oscillating electronic ballast supplied by voltages including interharmonics. And the relationship between characteristics of FL’s instantaneous power fluctuation and interharmonics is established. The simulation and experimental results confirm that the proposed methods are valid. Both theoretical and experimental results show that the interharmonic component included in supply voltage indeed leads flicker of FLs and the flicker frequency equals the voltage fluctuation frequency caused by interharmonics. The established relationship between FL’s instantaneous power fluctuation and interharmonics is helpful to further research on the evaluating flicker effect of interharmonics on FLs and framing the flicker limit standard of interharmonics.
[1] 中华人民共和国国家标准. 电能质量 电压波动和闪变[S]. 标准出版社. 2008. [2] 庞蕴凡. 视觉与照明[M]. 北京: 中国铁道出版社, 1993. [3] IEC 61000-4-15, Testing and measurement techniques: flickermeter-functional and design specifications[S]. [4] Yacamini R. Power system harmonics-part 4 inter- harmonics[J]. Power Engineering Journal, 1996, 10(4): 185-193. [5] Tayjasanant T, Xu W. A case study of flicker/ interharmonic problem caused by a variable frequency drive[C]. 11th International Conference on Harmonics and Quality of Power, 2004: 72-76 [6] Li C, Xu W, Tayjasanant T. Interharmonics: basic concepts and techniques for their detection and measurement[J]. Electric Power Systems Research, 2003, 66(1): 39-48. [7] Halpin S M, Bergeron R, Blooming T M, et al. Voltage and lamp flicker issues: should the IEEE adopt the IEC approach[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 1088-1097. [8] Tayjasanant T, Wang W, Li C, et al. Interharmonic- flicker curves[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1017-1024. [9] Yong J, Tayjasanant T, Xu W. Characterizing voltage fluctuations caused by a pair of interharmonics[J]. IEEE Transactions on Power Delivery, 2008, 23(1): 319-327. [10] Gallo D, Landi C, Langella R, et al. IEC flickermeter response to interharmonic pollution[C]. 11th Interna- tional Conference on Harmonics and Quality of Power, 2004: 489-494. [11] Gluskin E, Topalis F V, Kateri I. The instantaneous light-intensity function of a fluorescent lamp[J]. Physics Letters A, 2006, 353: 355-363. [12] 雍静, 李建波, 王晓静, 等. 含间谐波电压下荧光灯的功率响应[J]. 重庆大学学报, 2008, 31(3): 35-40. Yong Jing, Li Jianbo, Wang Xiaojing, et al. Power response of fluorescent lamp with voltage containing interharmonics[J]. Journal of Chongqing University, 2008, 31(3): 35-40. [13] 毛兴武, 祝大卫. 新型电子镇流器电路原理与设计[M]. 北京:人民邮电出版社, 2007. [14] 路秋生. 高频交流电子镇流器技术与典型应用电路[M]. 北京: 人民邮电出版社, 2007. [15] Marian K, Kazimierczuk, Wojciech S. Electronic ballast for fluorescent lamps[J]. IEEE Transactions on Power System, 1993, 8(4): 386-395. [16] 王兆安, 黄俊. 电力电子技术[M]. 北京: 机械工业出版社, 2000. [17] 胡伟, 查晓明, 孙建军. 多谐波源网络谐波源建模与谐波叠加仿真[J]. 中国电力, 2006, 39(3): 61-65. Hu Wei, Zha Xiaoming, Sun Jianjun. Harmonic sources modeling and harmonic superposition simulation of power system with multi-harmonic sources[J]. Electric Power, 2006, 39(3):61-65. [18] Guido C, Fabrizio I, Angela R, et al. Analytical modeling of harmonic analysis of line current of VSI-FED drives[J]. IEEE Transactions on Power Delivery, 2004, 19(3): 1212-1222. [19] 刘福太, 刘华章, 吕宏伟. 开关函数在非线性电路分析中的应用[J]. 海军航空工程学院学报, 2002, 17(3): 394-395. Liu Futai, Liu Huazhang, Lu Hongwei. The application of switch function in analysis of non- linearity circuit[J]. Journal of Naval Aeronautical Engineering Institute, 2002, 17(3): 394-395. [20] Changgary W, Chen S. An analytical approach for characterizing harmonic and interharmonic currents generated by VSI-fed adjustable speed drives[J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2585-2593. [21] 郑超, 周孝信, 李若梅. 新型高压直流输电的开关函数建模与分析[J]. 电力系统自动化, 2001, 29(8): 32-35. Zheng Chao, Zhou Xiaoxin, Li Ruomei. Modeling and analysis for VSC-HVDC using the switching function[J]. Automation of Electric Power Systems, 2005, 29(8): 32-35.