Distribution Network Planning Based on Fuzzy Expected Value Model
Yang Yi1, Wei Gang1, Zhou Bing1, Zhang Xin2
1. Shanghai Key Laboratory of Power Station Automation Technology Shanghai University of Electric Power Shanghai 200090 China 2. Shanghai Puhaiqiushi Electric Power New Technology Limited Company Shanghai 200090 China
Abstract:In traditional distribution network planning, uncertain planning parameters is difficult to deal with. To study further this problem, load forecast values is taken into account and the credibility theory and uncertain programming is introduced into it. Then a distribution network planning model is presented, which is based on fuzzy expected value model. The optimal solution is found using genetic algorithm. In this model, trapezoidal fuzzy variable is used to represent load predictive value. Moreover, the objective function and constraints of the model possess definite mathematical meaning, and the solution can be found by the strict mathematical approach. This model overcomes the defects of traditional distribution network planning model, such as, neglects the fuzziness of the load forecasting results or constructed fuzzy optimal planning model has no obvious mathematical meaning. An example illustrates that comparing to the traditional distribution network planning, the grid planning result obtained by this method is more adaptable to the uncertainty of the load in the future.
杨毅, 韦钢, 周冰, 张鑫. 基于模糊期望值模型的配电网网架规划[J]. 电工技术学报, 2011, 26(4): 200-207.
Yang Yi, Wei Gang, Zhou Bing, Zhang Xin. Distribution Network Planning Based on Fuzzy Expected Value Model. Transactions of China Electrotechnical Society, 2011, 26(4): 200-207.
[1] 刘健, 毕鹏翔, 杨文宇, 等. 配电网理论及应用[M]. 北京: 中国水利水电出版社, 2007. [2] Gorenstin B G, Campodonico N M, Costa J P, et al. Power system expansion planning under uncertainty[J]. IEEE Transactions on Power Systems, 1993, 8(1): 129-136. [3] 鞠平, 李靖霞. 配电网模糊优化规划(Ⅰ)—模型与方法[J]. 电力系统自动化, 2002, 26(14): 45-48. [4] Ramirez Rosado I J, Dominguez Navarro J A. Possibilistic model based on fuzzy sets for the multiobjective optimal planning of electric power distribution[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1801-1810. [5] Ramirez Rosado I J, Dominguez Navarro J A. New multiobjective tabu search algorithm for fuzzy optimal planning of power distribution systems[J]. IEEE Transactions on Power Systems, 2006, 21(1): 224-233. [6] 张永伍, 余贻鑫, 严雪飞, 等. 基于区间算法和范例学习的配电网网架规划[J]. 电力系统自动化, 2005, 29(17): 40-44. [7] 杨文宇, 刘健. 配电网架的多阶段不确定性规划[J]. 电工技术学报, 2006, 21(6): 89-95. [8] 杨文宇, 刘健, 余健明, 等. 基于风险度评价的配电网灵活规划[J]. 电工技术学报, 2005, 20(8): 18-23. [9] 刘宝碇, 赵瑞清, 王纲. 不确定规划及应用[M]. 北京: 清华大学出版社, 2003. [10] Khator S K, Leung L C. Power distribution planning: a review of models and issues[J]. IEEE Transactions on Power Systems, 1997, 12(3): 1151-1159. [11] Haffner S, Pereira L F A, Pereira L A, et al. Multistage model for distribution expansion planning with distributed generation; Part I: problem formu- lation[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 915-923. [12] 孙秋野, 张化光, 刘兆冰. 配电网模糊潮流计算方法及其收敛性研究[J]. 中国电机工程学报, 2008, 28(10): 46-50. [13] 汪皓, 吴文传, 张伯明, 等. 基于可信性理论的模糊潮流方法[J]. 电力系统自动化, 2007, 31(17): 21-25. [14] 玄光男, 程润伟. 遗传算法与工程设计[M]. 北京: 科学出版社, 2000.