Output Characteristics Discrepancy and Damping Mechanism Analysis of Grid-forming Converters under Diverse Damping Control Strategies
Meng Jianhui1, Liu Hao1, Shao Yinchi2, Huang Xianmiao2, Gong Yu2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding 071003 China;
2. State Grid Jibei Electric Power Company Limited State Grid Jibei Electric Power Research Institute Beijing 100045 China
The increasing integration of renewable energy sources into power systems has intensified challenges such as low inertia and weak grid support. Grid-forming converters based on virtual synchronous generator (VSG) control emulate voltage-source characteristics to enhance grid stability. Damping control, a pivotal element in VSG strategies, critically influences dynamic response, oscillation suppression, and power-sharing accuracy. However, existing studies predominantly focus on individual damping control designs, lacking systematic comparisons of output characteristics and damping mechanisms across different strategies. This gap leads to empirical parameter tuning in practice, limiting optimal performance. To address this, the study systematically investigates three damping control strategies—fixed-frequency damping (M1), grid-frequency damping (M2), and transient damping (M3)—to elucidate their steady-state and transient performance differences, inherent damping mechanisms, and applicability in diverse grid scenarios.
A unified mathematical framework for VSG power transfer functions under grid frequency constraints was derived using power transmission equations, incorporating grid frequency deviations and damping dynamics. Frequency-domain analysis was conducted to quantify the influence of key parameters (damping coefficient Dp, cutoff frequency ωc, and inertia constant H) on stability margins, transient power overshoot, and oscillation attenuation. Experimental validation was performed on a 380V hardware prototype, comprising a grid simulator, FPGA-based VSG controller, and multi-level power converters. Steady-state, power command tracking, and load-step tests were executed to validate theoretical findings.
Key results reveal distinct characteristics:M1 introduces steady-state power errors (0.12-0.24 pu under ±0.1 Hz frequency deviations) due to its dependency on grid frequency for damping feedback. However, it provides robust transient power support dominated by damping effects, achieving 0.208 pu power surge during load steps. Inertia-damping coupling amplifies oscillations at low damping ratios;M2 eliminates steady-state errors by decoupling damping from grid frequency but weakens transient power support (0.092 pu peak) as inertia dominates dynamics. Its behavior aligns with synchronous generators, where damping suppresses oscillations but limits power contribution;M3 balances steady-state accuracy and dynamic adaptability through a high-pass filter (HPF). At low cutoff frequencies (ωc=2 rad/s), it mimics M1 with reduced oscillations; higher ωc values enhance inertia effects but increase overshoot by 15% compared to M1.
The study further establishes operational guidelines:M1 is suited for weak grids or islanded systems requiring transient power support and primary frequency regulation;M2 excels in strong grids prioritizing steady-state precision, particularly in frequency-stable environments;M3 offers adaptability for hybrid scenarios, where adjustable ωc enables trade-offs between static accuracy and dynamic response.
These findings address the lack of comparative analysis in existing literature and provide actionable insights for parameter tuning. For instance, increasing Dp in M1 enhances stability but amplifies steady-state errors, while in M2, higher Dp reduces oscillations at the cost of transient support. The HPF in M3 introduces design complexity but enables scenario-specific optimization.
The work bridges theoretical modeling and practical implementation, offering a foundation for adaptive damping control in future grid-forming converters. Future research will explore multi-objective optimization of damping parameters under unbalanced grid conditions and renewable intermittency.
孟建辉, 刘昊, 邵尹池, 黄贤淼, 巩宇. 不同阻尼控制下构网型换流器并网输出特性差异与阻尼作用机理[J]. 电工技术学报, 0, (): 258106-258106.
Meng Jianhui, Liu Hao, Shao Yinchi, Huang Xianmiao, Gong Yu. Output Characteristics Discrepancy and Damping Mechanism Analysis of Grid-forming Converters under Diverse Damping Control Strategies. Transactions of China Electrotechnical Society, 0, (): 258106-258106.
[1] 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475.
Xie Xiaorong, He Jingbo, Mao Hangyin, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475.
[2] 罗宇航, 肖凡, 郑宇婷, 等. 基于稳定域的PQ控制并网逆变器稳定性分析方法[J/OL]. 电工技术学报, 2025: 1-14. (2025-03-11). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241966.
Luo Yuhang, Xiao Fan, Zheng Yuting, et al. Stability analysis method of grid-connected inverter with PQ control based on stable operating region[J/OL]. Transactions of China Electrotechnical Society, 2025: 1-14. (2025-03-11). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241966.
[3] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581.
Li Bo, Chen Minyou, Zhong Haiwang, et al.A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[4] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
Zhang Zhigang, Kang Chongqing.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[5] 舒印彪, 张正陵, 汤涌, 等. 新型电力系统构建的若干基本问题[J]. 中国电机工程学报, 2024, 44(21): 8327-8341.
Shu Yinbiao, Zhang Zhengling, Tang Yong, et al.Fundamental issues of new-type power system construction[J]. Proceedings of the CSEE, 2024, 44(21): 8327-8341.
[6] 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3595.
Xu Jieyi, Liu Wei, Liu Shu, et al.Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46(9): 3586-3595.
[7] 刘辉, 于思奇, 孙大卫, 等. 构网型变流器控制技术及原理综述[J]. 中国电机工程学报, 2025, 45(1): 277-297.
Liu Hui, Yu Siqi, Sun Dawei, et al.An overview of control technologies and principles for grid-forming converters[J]. Proceedings of the CSEE, 2025, 45(1): 277-297.
[8] 迟永宁, 江炳蔚, 胡家兵, 等. 构网型变流器: 物理本质与特征[J]. 高电压技术, 2024, 50(2): 590-604.
Chi Yongning, Jiang Bingwei, Hu Jiabing, et al.Grid-forming converters: physical mechanism and characteristics[J]. High Voltage Engineering, 2024, 50(2): 590-604.
[9] 迟永宁, 江炳蔚, 范译文, 等. 构网型变流器: 控制与稳定特性[J]. 高电压技术, 2025, 51(4): 1527-1542.
Chi Yongning, Jiang Bingwei, Fan Yiwen, et al.Grid-forming converters: control and behavior of stability[J]. High Voltage Engineering, 2025, 51(4): 1527-1542.
[10] 陈建, 任永峰, 孟庆天, 等. 含UDE附加阻尼支路的构网型直驱永磁同步风电机组次同步振荡抑制策略[J]. 电工技术学报, 2024, 39(7): 1985-2000.
Chen Jian, Ren Yongfeng, Meng Qingtian, et al.Sub-synchronous oscillation suppression strategy for grid-forming direct-drive permanent magnet synchronous generator with uncertainty and disturbance estimator supplementary damping branch[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 1985-2000.
[11] 李志军, 贾学岩, 王丽娟, 等. 基于改进惯量阻尼特性的VSG控制策略[J]. 太阳能学报, 2021, 42(7): 78-85.
Li Zhijun, Jia Xueyan, Wang Lijuan, et al.Improved virtual synchronous generator based on enhanced inertia and damping characteristics[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 78-85.
[12] Liu Jia, Miura Y, Bevrani H, et al.Enhanced virtual synchronous generator control for parallel inverters in microgrids[J]. IEEE Transactions on Smart Grid, 2017, 8(5): 2268-2277.
[13] 江世明, 唐杰. 基于暂态阻尼增强的改进VSG控制策略[J]. 电力系统保护与控制, 2023, 51(19): 144-154.
Jiang Shiming, Tang Jie.Improved VSG control strategy based on transient damping enhancement[J]. Power System Protection and Control, 2023, 51(19): 144-154.
[14] 张自力, 刁亚飞, 田志杰, 等. 基于适应迁移粒子群算法的光储构网型灵活调节策略[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-12. (2024-09-19). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=HBDL20240915001&dbname=CJFD&dbcode=CJFQ.
Zhang Zili, Diao Yafei, Tian Zhijie, et al. Flexible grid-forming control strategy for photovoltaic energy storage system based on adaptive moving particle swarm optimization algorithm[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 2024: 1-12. (2024-09-19). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=HBDL20240915001&dbname=CJFD&dbcode=CJFQ.
[15] 黄森, 姚骏, 钟勤敏, 等. 含跟网和构网型新能源发电单元的混联电力系统暂态同步稳定分析[J]. 中国电机工程学报, 2024, 44(21): 8378-8392.
Huang Sen, Yao Jun, Zhong Qinmin, et al.Transient synchronization stability analysis of hybrid power system with grid-following and grid-forming renewable energy generation units[J]. Proceedings of the CSEE, 2024, 44(21): 8378-8392.
[16] 李新, 刘国梁, 杨苒晨, 等. 具有暂态阻尼特性的虚拟同步发电机控制策略及无缝切换方法[J]. 电网技术, 2018, 42(7): 2081-2088.
Li Xin, Liu Guoliang, Yang Ranchen, et al.VSG control strategy with transient damping term and seamless switching control method[J]. Power System Technology, 2018, 42(7): 2081-2088.
[17] 石荣亮, 王斌, 黄冀, 等. 储能虚拟同步机的并网阻尼特性分析与改进策略[J]. 太阳能学报, 2023, 44(7): 30-38.
Shi Rongliang, Wang Bin, Huang Ji, et al.Analysis and improvement strtegy of grid-connected damping characteristic for energy storage vsg[J]. Acta Energiae Solaris Sinica, 2023, 44(7): 30-38.
[18] 魏腾, 李昕涛. 基于改进阻尼控制的VSG控制策略[J]. 微电机, 2024, 57(9): 30-36.
Wei Teng, Li Xintao.VSG control strategy based on improved damping control[J]. Micromotors, 2024, 57(9): 30-36.
[19] 李明烜, 王跃, 徐宁一, 等. 基于带通阻尼功率反馈的虚拟同步发电机控制策略[J]. 电工技术学报, 2018, 33(10): 2176-2185.
Li Mingxuan, Wang Yue, Xu Ningyi, et al.Virtual synchronous generator control strategy based on bandpass damping power feedback[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2176-2185.
[20] Wen Bo, Boroyevich D, Burgos R, et al.Analysis of D-Q small-signal impedance of grid-tied inverters[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 675-687.
[21] 杨效, 曾成碧, 苗虹, 等. 优化虚拟同步发电机惯量和阻尼的自适应控制策略[J]. 太阳能学报, 2023, 44(11): 495-504.
Yang Xiao, Zeng Chengbi, Miao Hong, et al.Optimizing adaptive inertia and damping control strategy of virtual synchronous generator[J]. Acta Energiae Solaris Sinica, 2023, 44(11): 495-504.
[22] 王开让, 赵一名, 孟建辉, 等. 基于自适应模型预测控制的光储虚拟同步机平滑并网策略[J]. 高电压技术, 2023, 49(2): 831-839.
Wang Kairang, Zhao Yiming, Meng Jianhui, et al.Smooth grid-connected strategy for photovoltaic-storage virtual synchronous generator based on adaptive model predictive control[J]. High Voltage Engineering, 2023, 49(2): 831-839.
[23] 刘思佳, 刘海涛, 张隽, 等. 基于等效阻抗的VSG电压支撑影响因素分析与改进控制策略研究[J/OL]. 电工技术学报, 2025: 1-14. (2025-01-24). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241876.
Liu Sijia, Liu Haitao, Zhang Jun, et al. Research on the analysis of VSG voltage support influence factors and improvement control strategies based on equivalent impedance[J/OL]. Transactions of China Electrotechnical Society, 2025: 1-14. (2025-01-24). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241876.
[24] 郭潇镁, 李永刚, 周一辰. 基于变权重自适应MPC的VSG调频控制策略[J/OL]. 电工技术学报, 2025: 1-14. (2025-02-17). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241772.
Guo Xiaomei, Li Yonggang, Zhou Yichen. VSG frequency regulation control strategy based on variable weight adaptive MPC[J/OL]. Transactions of China Electrotechnical Society, 2025: 1-14. (2025-02-17). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241772.
[25] 孟建辉, 叶泰然, 任必兴, 等. 考虑频率不同响应阶段的惯量评估优化策略[J]. 电力自动化设备, 2024, 44(11): 171-177.
Meng Jianhui, Ye Tairan, Ren Bixing, et al.Optimization strategy for inertia assessment considering different frequency response stages[J]. Electric Power Automation Equipment, 2024, 44(11): 171-177.
[26] 刘晓明, 刘俊, 姚宏伟, 等. 基于VSG的风光水火储系统频率调节深度强化学习方法[J]. 电力系统自动化, 2025, 49(9): 114-124.
Liu Xiaoming, Liu Jun, Yao Hongwei, et al.Deep reinforcement learning method for frequency regulation of wind-solar-hydro-thermal-storage systems based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2025, 49(9): 114-124.