Abstract:Based on transient equivalent circuits and mathematic model of self-excited induction generators under no-load in stationary reference frame, it is proposed a holistic approach to analysis using Lyapunov stability theory. Through analysis of initial transient states, what just makes the self-excitation happen is fixed to be condition of limit cycle. Then, analytic formulas of stator power frequency, critical excited capacitance and critical rotor speed are obtained by analysis and calculation. Therefore whether the self-excitation build-up begins can be judged. Compared with other methods, the calculated results agree with others’ and are more accurate, which shows its correctness and practicability. The approach combined with the analytic formulas analyzes the self-excitation build-up, the results agree well with that of experiment. This proves it further correct and valid.
李海涛, 卢子广. 基于Lyapunov稳定性理论的自励异步发电机建压过程分析[J]. 电工技术学报, 2014, 29(9): 167-173.
Li Haitao, Lu Ziguang. Analysis of Voltage Build-Up for Self-Excited Induction Generators Based on Lyapunov Stability Theory. Transactions of China Electrotechnical Society, 2014, 29(9): 167-173.
[1] 马伟明, 李卫超. 矢量控制感应电动机 H ∞ 磁通观测器研究[J]. 电工技术学报, 2006, 21(8): 31-35. Nie Ziling, Ma Weiming, Li Weichao. H ∞ flucx observer of induction motor for vector control[J]. Transactions of China Electrotechnical Society, 2006, 21(8): 31-35. [2] 姚文熙, 吕征宇. 基于改进闭环磁链观测器的感应电机无速度矢量控制[J]. 电工技术学报, 2013, 28(3): 148-153. Lu Wenbin, Yao Wenxi, Lü Zhengyu. Speed sensorless vector control with improved closed-loop flux for induction machines[J]. Transactions of China Electro- technical Society, 2013, 28(3): 148-153. [3] 胡家兵. 双馈异步风力发电机并网运行中的几个热点问题[J]. 中国电机工程学报, 2012, 32(27): 1-15. He Yikang, Hu Jiabing. Several hot-spot issues associated with the grid-connected operations of wind-turbine driven doubly fed induction generators[J]. Proceedings of the CSEE, 2012, 32(27): 1-15. [4] 孟岩峰, 龚文明, 等. 非理想电网条件下双馈式风电机组的运行控制策略[J]. 电工技术学报, 2013, 28(5): 99-104. Hu Shuju, Meng Yanfeng, Gong Wenming, et al. Operation control strategy of DFIG wind turbine under non-ideal grid conditions[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 99-104. [5] P K, Singh B, Murthy S S, et al. Isolated wind- hydro hybrid system using cage generators and battery storage[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1141-1153. [6] R C. Three-phase self-excited induction generators: An Overview[J]. IEEE Transactions on Energy Conver- sion, 2005, 20(2): 292-299. [7] T F. Capacitance requirements of self-excited induction generators[J]. IEEE Transactions on Energy Conversion, 1993, 8(2): 304-311. [8] O. Minimum airgap flux linkage requirement for self-excitation in stand-alone induction generators[J]. IEEE Transactions on Energy Conversion, 1995, 10(3): 484-492. [9] 王祥珩. 异步发电机空载建压电容值的确定方法[J]. 清华大学学报, 2004, 44(7): 893-896. Wu Xinzhen, Wang Xiangheng. Self-excited capacitance or induction generator for no load operation[J]. Journal of Tsinghua University, 2004, 44(7): 893-896. [10] M H. A novel method of evaluating performance characteristics of a self-excited induction generator[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 358-365. [11] L, Su J Y. Dynamic performance of an isolated self-excited induction generator under various loading conditions[J]. IEEE Transactions on Energy Conversion, 1999, 14(1): 93-100. [12] 沈沉, 刘锋, 等. 基于轨迹特征根的暂态稳定实用判据[J]. 电力系统自动化, 2012, 36(16): 14-19. Tan Wei, Shen Chen, Liu Feng, et al. A practical criterion for trajectory eigenvalues based transient stability analysis[J]. Automation of Electric Power Systems, 2012, 36(16): 14-19 [13] 郝宽胜, 兰勇. 以特征值为判据的异步发电机自激建压过程分析[J]. 中国电机工程学报, 2008, 28(8): 111-116. Wu Xinzhen, Hao Kuansheng, Lan Yong. Analysis of voltage build-up for self-excited induction generator based on eigenvalues[J]. Proceedings of the CSEE, 2008, 28(8): 111-116. [14] 张智晟, 杨乐梅, 等. 异步发电机自激建压临界值的计算[J]. 电网技术, 2008, 32(23): 24-28. Wu Xinzhen, Zhang Zhisheng, Yang Lemei, et al. An approach to calculate critical values of self-excited voltage build-up for induction generators[J]. Power System Technology, 2008, 32(23): 24-28. [15] M, Kiselychnyk O. The complex hurwitz test for the analysis of spontaneous self-excitation in induction generators[J]. IEEE Transactions on Automatic Control, 2013, 58(2): 449-454. [16] P C, Wasynczuk O, Sudhoff S D. Analysis of electric machinery and drive systems[M]. New York: IEEE Press, 2002. [17] H K. Nonlinear systems[M]. 3rd ed. NJ: Upper Saddle River, Prentice-Hall, 2002.