Abstract:The radial and connectivity of distribution network are the constraint conditions in distribution networks reconfiguration. Distribution network is designed in closed loop and operated in open loop. If contact switch closed, there will be a small ring. At the time, there must be a section switch opened in the ring to make the distribution network keeping radial. Therefore, a contact switch decides a ring network, it’s the encoding method based on ring network. And based on it, this paper discusses the rules and procedures of judging radial of network and defines a connection matrix which stands for the relationship of node to node, node to branch. Judging the diagonal element of the connection matrix is or not will determine the existence of acnode. Judging the nodes from the end node to the head node of the connection matrix is source point or not will determine the existence of island. In the end, two examples validate the efficacy of the method proposed above.
麻秀范, 丁宁, 李龙. 配电网重构中网络辐射形与连通性的判断[J]. 电工技术学报, 2014, 29(8): 289-293.
Ma Xiufan, Ding Ning, Li Long. Judging Radial and Connectivity of Network in Distribution Networks Reconfiguration. Transactions of China Electrotechnical Society, 2014, 29(8): 289-293.
[1] 王守相, 王成山. 一种隐含并行的大规模三相不平衡配电网络重构新算法[J]. 电力系统自动化, 2000, 24(19): 34-38. Wang Shouxiang, Wang Chengshan. A novel network reconfiguration algorithm implicitly including parallel for large-scale unbalanced distribution systems[J]. Automation of Electric Power Systems, 2000, 24(19): 34-38. [2] 欧阳武, 程浩忠, 张秀彬, 等. 基于随机生成树策略的配网重构遗传算法[J]. 高电压技术, 2008, 34(8): 1726-1730. Ouyang Wu, Cheng Haozhong, Zhang Xiubin, et al. Genetic algorithm based on random spanning trees in distribution network reconfiguration[J]. High Voltage Engineering, 2008, 34(8): 1726-1730. [3] 杨建军, 战红. 基于图论的改进遗传算法在配网重构中的应用[J]. 电力系统保护与控制, 2010, 38(21): 122-125. Yang Jianjunt, Zhan Hong. Application of the improved genetic algorithm based on graph theory in distribution network reconfiguration[J]. Power System Protection and Control, 2012, 38(21): 122-125. [4] 朱广萍. 图的连通性的矩阵判别法及计算机实现[J]. 江苏技术师范学院学报(自然科学版), 2009, 15(3): 1-4, 9. Zhu Guangping. Matrix discriminance and computer algorithm of graph connectivity[J]. Journal of Jiangsu Teachers University of Technology(Natural Science Edition), 2009, 15(3): 1-4, 9. [5] 陆鸣盛, 沈成康. 图的连通性快速算法[J]. 同济大学学报, 2001, 29(4): 436-439. Lu Mingsheng, Shen Chengkang. Speedy algorithm for connexity of graph[J]. Journal of Tongji University, 2001, 29(4): 436-439. [6] 陈树柏. 网络图论及其应用[J]. 北京: 科学出版社, 1982. [7] 王湘中, 黎晓兰. 基于关联矩阵的电网拓扑辨识[J]. 电网技术, 2001, 25(2): 10-12, 16. Wang Xiangzhong, Li Xiaolan. Topology identification of network based on incidence matrix[J]. Power System Technology, 2001, 25(2): 10-12, 16. [8] 罗日成, 李卫国. 基于图论的配电网电气连通性分析算法[J]. 电工技术学报, 2005, 20(10): 98-102. Luo Richeng, Li Weiguo. Research on the algorithm of electric connectivity analyzing for distribution network based on graph theory[J]. Transactions of China Electrotechnical Society, 2005, 20(10): 98-102. [9] 周云成, 付立思, 许童羽, 等. 基于GIS的10 kV配电网络电气连通性分析[J]. 电力系统保护与控制, 2010, 38(10): 83-88. Zhou Yuncheng, Fu Lisi, Xu Tongyu, et al. Electric connectivity analyzing for 10 kV distribution network based on GIS[J]. Power System Protection and Control, 2010, 38(10): 83-88. [10] 储俊杰. 变电所一次主接线电气连通性分析的数学模型[J]. 电力系统自动化, 2003, 27(1): 31-33, 48. Chu Junjie. Mathematical model for analysing electrical connectedness of main electrical scheme in substation[J]. Automation of Electric Power Systems, 2003, 27(1): 31-33, 48. [11] 罗日成, 李卫国. 配电网电气连通性分析的快速算法研究[J]. 电网技术, 2004, 28(24): 52-55, 84. Luo Richeng, Li Weiguo. Research on high-speed algorithm for electrical connectivity analysis of distribution networks[J]. Power System Technology, 2004, 28(24): 52-55, 84. [12] 尹亮. 基于图形化主接线图的电气连通性分析和研究[J]. 电力系统保护与控制, 2009, 37(15): 65-68, 74. Yin Liang. Study and improved arithmetic about electrical connectedness of main electrical scheme[J]. Power System Protection and Control, 2009, 37(15): 65-68, 74. [13] Mesut Baran, Felix Wu. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1401-1407.