Application of Radial Basis Function-Virtual Boundary Method in Electromagnetic Computation
Zhang Huaiqing1, Nie Xin1, Wang Yawei2, Fu Zhihong1
1.State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University, Chongqing 400044 China; 2.Shanghai Jiao Tong University, Shanghai 200240 China
Abstract:With the concept of virtual boundary in elasticity, the paper combines radial basis function (RBF) method and traditional boundary element method (BEM) to form the RBF-virtual boundary method, and applies it to the numerical computation of electromagnetic field. The method not only has the advantages of traditional boundary element method, but also solves the problem of dependence on meshes and low accuracy of interpolation function in BEM. With the help of virtual boundary, the method effectively avoids the problems of singular integral and boundary effect which are associated with other boundary type numerical methods. What’s more, through the choice of round virtual boundary, the method completely avoids the dependence on meshes, so it is a real meshless boundary type method. The results show that the method has higher accuracy than traditional BEM.
张淮清, 聂鑫, 王亚伟, 付志红. 径向基函数-虚边界法在电磁计算中的应用[J]. 电工技术学报, 2014, 29(4): 79-84.
Zhang Huaiqing, Nie Xin, Wang Yawei, Fu Zhihong. Application of Radial Basis Function-Virtual Boundary Method in Electromagnetic Computation. Transactions of China Electrotechnical Society, 2014, 29(4): 79-84.
[1] 倪光正, 杨仕友, 邱捷, 等. 工程电磁场数值计算[M]. 北京: 机械工业出版社, 2004. [2] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010. [3] 张淮清. 电磁场计算中的径向基函数无网格法研究[D]. 重庆: 重庆大学, 2008. [4] Powell M. The theory of radial basis function approximation in 1990[J]. Advances in Numerical Analysis, 1992, 2: 105-210. [5] Hardy R. Theory and applications of the multiquadric- biharmonic method, 20 years of discovery 1968-1988 [J]. Computers Math with Application, 1990, 19(8/9): 163-208. [6] 孙焕纯, 杨海天, 等. 虚边界元法的应用及其求解方法[J]. 应用力学学报, 1994, 11(1): 1-2. Sun Huanchun, Yang Haitian, et al. Virtual boundary element method-application and strategies for solution [J]. Chinese Journal of Applied Mechanics, 1994, 11(1): 1-2. [7] 张耀明, 孙焕纯, 杨家新. 虚边界元法的理论分析[J]. 计算力学学报, 2000, 17(1): 56-62. Zhang Yaoming, Sun Huanchun, Yang Jiaxin. Theoretic analysis on virtual boundary element[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 56-62. [8] 孙焕纯, 李性厚, 张立州. 弹性力学问题的虚边界元——配点法[J]. 计算结构力学及其应用, 1991, 8(1): 1-2. Sun Huanchun, Li Xinghou, Zhang Lizhou. Virtual boundary element—collocation method for solving problems of elasticity[J]. Computational Structural Mechanics and Applications, 1991, 8(1): 1-2. [9] 胡浩军, 谭飞, 王元汉, 等. 无网格虚边界法在无限域问题中的应用[J]. 华中科技大学学报 (城市科学版), 2008, 25(3): 132-134. Hu Haojun, Tan Fei, Wang Yuanhan, et al. Applica- tion of meshless virtual boundary method for calcula- tion of infinite domain problems[J], Journal of Huazhong University of Science and Technology (Urban Science Edition), 2008, 25(3): 132-134. [10] Franke R. Scattered data interpolation: test of some method[J]. Math. Comput, 1982, 48: 381-399. [11] 张淮清, 俞集辉. 电磁场边值问题求解的径向基函数方法[J]. 高电压技术, 2010, 36(2): 531-536. Zhang Huaiqing, Yu Jihui. Radial basis function method for boundary value problems in electromagnetic field[J]. High Voltage Engineering, 2010, 36(2): 531-536.