Abstract:The conventional microsource wireless droop control base on “power-voltage-current” close loop is widely used. The power sharing performance of this method is significantly affected by the resistive line impedance. This paper analyzes the effectiveness of two existing solutions: the adjustment method by choosing proper control parameters has limited regulating range, which means a poor performance; the virtual impedance control method has a wide range. But it has the problem of voltage sag, this paper provides an improved method with no Q-V power close loop. This method simulates the virtual impedance as the virtual synchronous generator inductance; uses the virtual impedance voltage to realize the microsource Q-V voltage droop characteristic, which can save the microsource voltage sag amplitude. Finally, simulation results and experimental results on the parallel inverter are provided to prove the performance of this new control method.
[1] Lasseter R H, Piagi P. Microgrid: a conceptual solution[C]. IEEE Power Electronics Specialists Conference, IPESC2004, 2004, 6: 4285-4290. [2] 王成山, 王守相. 分布式发电供能系统若干问题研究[J]. 电力系统自动化, 2008, 32(20): 1-4. Wang Chengshan, Wang Shouxiang. Study on some key problems related on distributed generation systems[J]. Automation of Electric Power System, 2008, 32(20): 1-4. [3] 鲁宗相, 王彩霞, 闵勇, 等. 微电网研究综述[J]. 电力系统自动化, 2007, 31(19): 100-107. Lu Zongxiang, Wang Caixia, Min Yong, et al. Overview on microgrid research[J]. Automation of Electric Power System, 2007, 31(19): 100-107. [4] Li Y W, Kao C N. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid[J]. Transactions on Power Electronics, 2009, 24(12): 2977-2988. [5] 李福东, 吴敏. 微网孤岛模式下负荷分配的改进控制策略[J]. 中国电机工程学报, 2011, 31(13): 18-25. Li Fudong, Wu Min. An improved control strategy of load distribution in an autonomous microgrid[J]. Proceedings of the CSEE, 2011, 31 (13): 18-25. [6] Guerrero J M, GarciadeVicuna L, Matas J, et al. Output impedance design of parallel-connected UPS inverters with wireless load-sharing control[J]. Transactions on Industrial Electronics, 2005, 52(4): 1126-1135. [7] Guerrero J M, Hang L, Uceda J. Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization[J]. Transactions on Industrial Electronics, 2011, 58(1): 158-172. [8] 王成山, 肖朝霞, 王守相. 微网中分布式电源逆变器的多环反馈控制策略[J]. 电工技术学报, 2009, 24(2): 100-107. Wang Chengshan, Xiao Zhaoxia, Wang Shouxiang. Multiple feedback loop control scheme for inverters of the micro source in microgrids[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 100-107. [9] 吴云亚, 阚加荣, 谢少军. 适用于低压微电网的逆变器控制策略设计[J]. 电力系统自动化, 2012, 36(6): 39-44. Wu Yunya, Kan Jiarong, Xie Shaojun. Control strategy design for inverters in low voltage microgrids [J]. Automation of Electric Power Systems, 2012, 36(6): 39-44. [10] He J W, Li Y W. Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation[J]. Transactions on Industry Applications, 2011, 47(6): 2525-2538. [11] 关雅娟, 邬伟扬, 郭小强. 微电网中三相逆变器孤岛运行控制技术[J]. 中国电机工程学报, 2011, 31(33): 52-60. Guan Yajuan, Wu Weiyang, Guo Xiaoqiang. Control strategy for three-phase inverters dominated microgrid in autonomous operation[J]. Proceedings of the CSEE, 2011, 31(33): 52-60. [12] 程军照, 李澍森, 吴在军, 等. 微电网下垂控制中虚拟电抗的功率解耦机理分析[J]. 电力系统自动化, 2012, 36(7): 27-32. Cheng Junzhao, Li Shusen, Wu Zaijun, et al. Analysis of power decoupling mechanism for droop control with virtual inductance in a microgrid[J]. Automation of Electric Power Systems, 2012, 36(7): 27-32. [13] Joan R, Alvaro L, et al. Control of power converters in AC microgrids[J]. Transactions on Power Electronics, 2012, 27(11): 4734-4749. [14] 何仰赞, 温增银. 电力系统分析[M]. 武汉: 华中科技大学出版社, 2003. [15] 杨向真. 微网逆变器及其协调控制策略研究[D]. 合肥: 合肥工业大学, 2011.