Selective Harmonic Current Control Strategy Based on Frequency Adaptive Generalized Integrators
Xie Chuan1, He Chao2, Yan Hui2, Yang Hua3, Chen Guozhu2
1. University of Electronics and Science Technology of China Chengdu 611731 China 2. Zhejiang University Hangzhou 310027 China3. Juche Science-technology Co., LTD Huzhou 313100 China
Abstract:To improve the compensation performance of three-phase shunt active power filter (APF), a novel current control strategy is proposed based on frequency adaptive generalized integrators (GI). The method employs an array of generalized integrators, one for the fundamental, and one for each harmonic, implemented in stationary frame. Because of the characteristics of the GI of the infinite open loop gain and high selectivity, zero steady-state error and selective compensation of harmonics are achieved. The proposed controller is designed directly in Z-domain in order to eliminate the unexpected loss of gain and detuning of GI during digitalization processing. The frequency adaptive of the GI is realized by keeping the number of samples per fundamental fixed, and high compensation precision at the each harmonics in the presence of grid frequency variation is achieved. The effectiveness of the control scheme proposed is verified completely by experimental results.
谢川, 贺超, 闫辉, 杨华, 陈国柱. 基于频率自适应广义积分控制器选择性谐波电流控制策略[J]. 电工技术学报, 2013, 28(9): 65-72.
Xie Chuan, He Chao, Yan Hui, Yang Hua, Chen Guozhu. Selective Harmonic Current Control Strategy Based on Frequency Adaptive Generalized Integrators. Transactions of China Electrotechnical Society, 2013, 28(9): 65-72.
[1] Takeda M, Ikeda K, Tominaga Y. Harmonic current compensation with active filter[C]. IEEE Industry Apptications Society Annunal Meeting, 1987: 808-815. [2] Akagi H. New trends in active filters for power conditioning[J]. IEEE Transactions on Industry Applications, 1996, 32(6): 1312-1322. [3] Mattavelli P. A closed-loop selective harmonic compensation for active filters[J]. IEEE Transactions on Industry Applications, 2001, 37(1): 81-89. [4] Miret J, Castilla M, Matas J, et al. Selective harmonic-compensation control for single-phase active power filter with high harmonic rejection[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 3117-3127. [5] 成剑, 罗安, 付青. 简化DFT滑窗迭代算法在有源电力滤波器谐波检测中应用[J]. 电力自动化设备, 2005, 25(5): 57-60. Cheng Jian, Luo An, Fu Qing. Application of simplified DFT based sliding-window iterative algorithm in APF harmonic detection[J]. Electric Power Automation Equipment, 2005, 25(5): 57-60. [6] 薛蕙, 杨仁刚. 基于FFT的高精度谐波检测算法[J]. 中国电机工程学报, 2002, 22(12): 106-110. Xue Hui, Yang Rengang. Precise algorithms for harmonic analysis based on FFT algorithm[J]. Proceedings of the CSEE, 2002, 22(12): 106-110. [7] 张超, 杨耕, 杜继宏. 有源电力滤波器任意次谐波电流检测的新算法[J]. 电机与控制, 2002, 6(3): 252-255. Zhang Chao, Yang Geng, Du Jihong. A new algorithm for random harmonic current detection of active power filter[J]. Electric Machines and Control, 2002, 6(3): 252-255. [8] 王灏, 张超, 杨耕, 等. 可选择谐波型有源滤波器的检测及其闭环控制[J]. 清华大学学报(自然科学版), 2004, 44(1): 130-133. Wang Hao, Zhang Chao, Yang Geng, et al. Closed- loop control for selective harmonic compensation active power fitler[J]. Journal of Tsinghua University(Sci & Tech), 2004, 44(1): 130-133. [9] 郭希铮, 韩强, 杨耕, 等. 可选择谐波型有源电力滤波器的闭环控制和实现[J]. 电工技术学报, 2006, 21(9): 51-56. Guo Xizheng, Han Qiang, Yang Geng, et al. Closed-loop control method and implementation of selective harmonic type active power filters[J]. Transactions of China Electrotechnical Society, 2006, 21(9): 51-56. [10] Asiminoaei L, Blaabjerg F, Hansen S. Detection is key-Harmonic detection methods for active power filter applications[J]. IEEE Industry Applications Magazine, 2007, 13(4): 22-33. [11] Schauder C D, Moran S A. Mutiple reference frame controller for active filters and power line conditioners[P]. 5 309 353, 1994. [12] 张树全, 戴珂, 谢斌, 等. 多同步旋转坐标系下指定次谐波电流控制[J]. 中国电机工程学报, 2010, 30(3): 55-62. Zhang Q, Dai Ke, Xie Bin, et al. Selective harmonic current control based on multiple synchronous rotating coordinates[J]. Proceedings of the CSEE, 2010, 30(3): 55-62. [13] Newman M J, Zmood D N, Holmes D G. Stationary frame harmonic reference generation for active filter systems[J]. IEEE Transactions on Industry Applications, 2002, 38(6): 1591-1599. [14] Lascu C, Asiminoaei L, Boldea I, et al. High performance current controller for selective harmonic compensation in active power filters[J]. IEEE Transactions on Power Electronics, 2007, 22(5): 1826-1835. [15] 杨秋霞, 梁雄国, 郭小强, 等. 准谐振控制器在有源电力滤波器中的应用[J]. 电工技术学报, 2009, 24(7): 171-176. Yang Qiuxia, Liang Xiongguo, Guo Xiaoqiang, et al. Application of Quasi resonant controller for active power filter[J]. Transactions of China Electrotechnical Society, 2009, 24(07): 171-176. [16] Zmood D N, Holmes D G, Bode G H. Frequency-domain analysis of three-phase linear current regulators[J]. IEEE Transactions on Industry Applications, 2001, 37(2): 601-610. [17] Mattavelli P, Marafao F P. Repetitive-based control for selective harmonic compensation in active power filters[J]. IEEE Transactions on Industrial Electronics, 2004, 51: 1018-1024. [18] 张崇巍, 张兴. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2003. [19] Xiaoming Y, Merk W, Stemmler H, et al. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions[J]. IEEE Transactions on Industry Applications, 2002, 38(2): 523-532. [20] 杨淑英, 张兴, 张崇巍, 等. 基于自适应谐振调节器的变速恒频风力发电双馈驱动研究[J]. 中国电机工程学报, 2007, 27(14): 96-101. Yang Shuying, Zhang Xing, Zhang Chongwei, et al. Study on adaptive resonant regulator-based doubly fed driver for variable-speed constant-frequency wind-power generator[J]. Proceedings of the CSEE, 2007, 27(14): 96-101. [21] 陈炜, 陈成, 宋战锋, 等. 双馈风力发电系统双PWM变换器比例谐振控制[J]. 中国电机工程学报, 2009, 29(15): 1-7. Chen Wei, Chen Cheng, Song Zhanfeng, et al. Proportional-resonant control for dual PWM converter in doubly fed wind generation system[J]. Proceedings of the CSEE, 2009, 29(15): 1-7. [22] 郭伟峰, 徐殿国, 武健, 等. LCL有源电力滤波器新型控制方法[J]. 中国电机工程学报, 2010, 30(3): 42-48. Guo Weifeng, Xu Dianguo, Wu Jian, et al. Novel control method for LCL active power filter[J]. Proceedings of the CSEE, 2010, 30(3): 42-48. [23] 高吉磊, 林飞, 郑琼林. 基于网压预测的单相PWM整流器比例谐振控制[J]. 电工技术学报, 2011, 26(5): 45-51. Gao Jilei, Lin Fei, Zheng T Q. Proportional-resonant control of single-phase PWM rectifiers based on grid voltage prediction[J]. Transactions of China Electrotechnical Society, 2011, 26(5): 45-51. [24] 唐诗颖, 彭力, 康勇, 等. 并联有源滤波器广义积分控制设计新方法[J]. 中国电机工程学报, 2011, 31(12): 40-45. Tang Shiying, Peng Li, Kang Yong, et al. Novel design procedure of generalized integrators for shunt active power filters[J]. Proceedings of the CSEE, 2011, 31(12): 40-45. [25] Yepes A G, Freijedo F D, Doval-Gandoy J, et al. Effects of discretization methods on the performance of resonant controllers[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1692-1712. [26] Xie C, He C, Yan H, et al. Design and analysis of frequency adaptive generalized integrators for active power filters[C]. The 37th Annual Conference of the IEEE Industrial Electronics Society (IECON2011), Melbourne, Australia, 2011: 3989-3994.