Abstract:The grid-connected inverter which employs phase lock loop (PLL) with drooped characteristic can obtain unity power factor. However, the islanding can’t be detected when the resonant frequency of parallel RLC load is in the range of normal power grid frequency. Compared to other islanding detecting method, this zone is relatively larger. In order to decrease the NDZ, an improved PLL is proposed, which introduces a phase difference disturbance to the drooped PLL. The principle of parameters selecting is given and the NDZ of the improved PLL strategy is significant decreased. The simulation and experimental results verify that the proposed method is effective for islanding detection without affecting the quality of grid current.
阚加荣, 罗运虎, 谢少军, 顾春雷, 吴云亚, 姚志垒. 基于下垂特性锁相环的反孤岛性能分析[J]. 电工技术学报, 2013, 28(4): 165-170.
Kan Jiarong, Luo Yunhu, Xie Shaojun, Gu Chunlei, Wu Yunya, Yao Zhilei. Analysis with Anti-Islanding Performance of Grid-Connected Inverters Based on Drooped PLL. Transactions of China Electrotechnical Society, 2013, 28(4): 165-170.
[1] IEEE Standards Coordinating Committee 21. IEEE Std. 929-2000, IEEE recommended practice for utility interface of photovoltaic (PV) system[S]. New York: the Institute Electric and Electronics Engineering Incorporated, 2000. [2] Jang S I, Kim K H. An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current[J]. IEEE Transactions on Power Delivery, 2004, 19(2): 745-752. [3] Rifaat R M. Critical considerations for utility/ cogeneration inter-tie protection scheme configuration[J]. IEEE Transactions on Industry Applications, 1995, 31(5): 973-977. [4] Refern M, Usta O, Fielding G. Protection against loss of utility grid supply for a dispersed storage and generation unit[J]. IEEE Transactions on Power Delivery, 1993, 8(3): 948-954. [5] Ropp M, Begovic M , Rohatgi A. Determining the relative effectiveness of islanding detection methods using phase criteria and nondetection zones[J]. IEEE Transactions on Energy Conversion, 2000, 15(3): 290-296. [6] 张纯江, 郭忠南, 孟慧英, 等. 主动电流扰动法在并网发电系统孤岛检测中的应用[J]. 电工技术学报, 2007, 22(7): 176-178. Zhang Chunjiang, Guo Zhongnan, Meng Huiying, et al. Active current disturbing method for islanding detection of grid-connected inverters[J]. Transactions of China Electrotechnical Society, 2007, 22(7): 176-178. [7] Timbus A V, Teodorescu R, Blaabjerg F. Online grid measurement and ENS detection for PV inverter running on highly inductive grid[J]. IEEE Transactions on Power Electronics, 2004, 2(3): 77-82. [8] John V, Ye Z, Kolwalkar A. Investigation of anti-islanding protection of power converter based distributed generators using frequency domain analysis[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1177-1183. [9] Yin J, Chang L, Diduch C. A new adaptive logic phase-shift alogrithm for anti-islanding protections in inverter-based DG systems[C]. Proceedings of the 36th IEEE Power Electronics Specialists Conference, 2005: 2482-2486. [10] Hung G K, Chang C C, Chen C L. Automatic phase-photovoltaic inverters[J]. IEEE Transactions on Energy Conversion, 2003, 18(1): 169-173. [11] 刘芙蓉, 康勇, 段善旭, 等. 主动移频式孤岛检测方法的参数优化[J]. 中国电机工程学报, 2008, 28(1): 95-99. Liu Furong, Kang Yong, Duan Shanxu, et al. Parameter optimization of active frequency drift islanding detection method[J]. Proceedings of the CSEE, 2008, 28(1): 95-99. [12] 刘方锐, 余蜜, 张宇, 等. 主动移频法在光伏并网逆变器并联运行下的孤岛检测机理研究[J]. 中国电机工程学报, 2009, 29(12): 47-51. Liu Fangrui, Yu Mi, Zhang Yu, et al. Islanding detection evaluation for active frequency drifting methods in multiple photovoltaic grid-connected converters[J]. Proceedings of the CSEE, 2009, 29(12): 47-51. [13] 阚加荣, 肖华锋, 罗运虎, 等. 基于下垂锁相的逆变器并网控制策略研究[J]. 中国电机工程学报, 2011, 31(18): 21-26. Kan Jiarong, Xiao Huafeng, Lua Yunhu, et al. Study of control strategy for grid-connected inverters based on dropped PLL[J]. Proceedings of the CSEE, 2011, 31(18): 21-26. [14] IEEE standard for interconnecting distributed resources with electric power systems. IEEE Std 1547-2003[S]. Institute of Electrical and Electronic Engineers, 2003.