A Sensor-Less Control Scheme for Permanent Magnet Synchronous Generators Using Predictive Dead-Beat Algorithm
Tong Li1, Zou Xudong1, Feng Shushuai1, Huang Qingjun1, Zhang Yun2, Kang Yong1
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology 430074 China 2. Hunan Electric Power Supply Service Center Changsha 410007 China
Abstract:This paper proposes a high-performance sensor-less control scheme using predictive dead-beat algorithm for the permanent magnet synchronous generators(PMSG). To derive excellent sensor-less control performances, the estimated back EMF in cascade with a compensator is proposed to be applied into dead-beat controller, achieving both the stability improvement and null error tracking performance of stator current. Then, advanced prediction of stator current by Luenberger algorithm is further adopted to eliminate negative effects of the one-step-delay, and on premise of system stability, parameters in discrete control model are designed to improve both the dynamic responses and robust- ness against parameter variations. On this basis, the synchronous rotating frame phase lock loop(SRF-PLL) that incorporates the estimated back EMF could observe the rotor position angle and speed, which to be well involved in achieving the flux-orientation and speed feedback regulation. Finally, simulation analysis and experimental results from a 10kW PMSG-based prototype direct-driven power generation system are shown to well verify the effectiveness and feasibility of the proposed sensor-less control scheme.
[1] Chinchilla M, Arnaltes S, Burgos J C, et al. Control of permanent-magnet generators applied to variable speed wind-energy systems connected to the grid[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 130-135. [2] 赵仁德, 王永军, 张家胜. 直驱式永磁同步风力发电系统最大功率追踪控制[J]. 中国电机工程学报, 2009, 29(27): 106-111. Zhao Rende, Wang Yongjun, Zhang Jiasheng. Maximum power point tracking control of the wind energy generation system with direct-driven permanent synchronous generators[J]. Proceedings of the CSEE, 2009, 29(27): 106-111. [3] Spooner E, Williams A C. Direct coupled permanent magnet generators for wind turbine applications[J]. IEE Electronic Power Application, 1996, 143(1):1-8. [4] Li H, Chen Z. Overview of different wind generator systems and their comparisons[J]. IET Renewable Power Generation, 2008, 2(2): 123-128. [5] Hansen A D, Michale G. Multi-pole permanent magnet synchronous generator wind turbines’ grid support capability in uninterrupted operation during grid faults[J]. IET Renewable Power Generation, 2009, 3(3): 333-348. [6] Bianchi N, Bolognai S, Jang Ji Hong, et al. Comparison of PM motor structures and sensorless control techniques for zero-speed rotor position detection[J]. IEEE Transactions on Industry Electronics, 2007, 22(6): 2466-2475. [7] 齐放, 邓智泉, 仇志坚, 等. 一种永磁同步电机无速度传感器的矢量控制[J]. 电工技术学报, 2007, 22(10): 30-35. Qi Fang, Deng Zhiquan, Qiu Zhijian, et al. A method of sensorless vector control of PMSM[J]. Transactions of China Electrotechnical Society, 2007, 22(10): 30-35. [8] Qiao W, Yang X, Gong X. Wind speed and rotor position sensorless control for direct-drive PMG wind turbines[J]. IEEE Transactions on Industry Electronics, 2012, 48(1): 3-11. [9] Kim H, Son J B, Lee J Y. A high-speed sliding-mode observer for the sensor-less speed control of PMSM[J]. IEEE Transactions on Industry Electronics, 2011, 47(3): 1337-1343. [10] Prendl M, Schaltz E. Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems[J]. IEEE Transactions on Industry Electronics, 2011, 58(9): 4087-4095. [11] 年珩, 李嘉文, 万中奇. 基于参数在线辨识的永磁风力发电机无位置传感器控制技术[J]. 中国电机工程学报, 2012, 32(12): 146-154. Nian Heng, Li Jiawen, Wan Zhongqi. Sensor-less control technique of PMSG for wind power application based on on-line parameter identification[J]. Proceedings of the CSEE, 2012, 32(12): 146-154. [12] 王宏佳, 杨明, 牛里, 等. 永磁交流伺服系统电流环带宽扩展研究[J]. 中国电机工程学报, 2010, 30(12): 56-62. Wang Hongjia, Yang Ming, Niu Li, et al. Current loop bandwidth extension for permanent magnet AC servo system[J]. Proceedings of the CSEE, 2010, 30(12): 56-62. [13] Ho C N, Cheung V, Chung H S H. Constant- frequency hysteresis current control of grid-connected VSI without bandwidth control[J]. IEEE Transactions on Power Electronics, 2009, 24(11): 2484-2495. [14] Kim K H, Youn M J. A simple and robust digital current control technique of a PM synchronous motor using time delay control approach[J]. IEEE Transactions on Power Electronics, 2001, 16(1): 72-82. [15] Rodriguez J, Pontt J, Silva C A, et al. Predictive current control of a voltage source inverter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 495-503. [16] Cortes P, Kazmierkowski M, Kennel R, et al. Predictive control in power electronics and drives[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4312-4324. [17] Morel F, Shi X F Lin, Retif J M, et al. A comparative study of predictive current control schemes for a permanent magnet synchronous machine drive[J]. IEEE Transactions on Industry Electronics, 2009, 56(7): 2715-2728. [18] Huerta J M E, Moreno J C, Fischer J R, et al. A synchronous reference frame robust predictive current control for three-phase grid-connected inverters[J]. IEEE Transactions on Industry Electronics, 57(3): 956-962. [19] Huerta J M E, Castello J, Gil R G, et al. An adaptive robust predictive current control for three-Phase grid- connected inverters[J]. IEEE Transactions on Industry Electronics, 58(8): 3537-3546. [20] 陈荣. 永磁同步电机的控制系统[M]. 北京: 中国水利水电出版社, 2009.