Abstract:As one of China’s strategic emerging industries, the development of electric vehicles(EVs) is being continuous. Considering the present utilization status of primary energy in Chinese power system, charging EVs from power grid directly will neither reduce carbon emissions effectively, nor eliminate or alleviate the dependence on fossil fuels. Research work of this paper is aimed at solving the above problems, studying the integrated mode and key issues of renewable energy sources(RES) and EVs’ charging and discharging facilities in microgrid. Firstly, this paper studies the integrated mode and adaptability of RES and EVs’ charging and discharging facilities, and then discusses some typical structures of the integrated system in microgrid. Demonstration projects of China and abroad are summarized and analyzed. Considering the research status in China and abroad, this paper analyses several key issues and research areas of the integrated system, such as optimal configuration, methods of control and protection, optimal design and operation and power quality. Application of the integrated system in microgrid will achieve the win-win goal of synergy effect. Some advices are given according to the national conditions of China.
肖湘宁, 陈征, 刘念. 可再生能源与电动汽车充放电设施在微电网中的集成模式与关键问题[J]. 电工技术学报, 2013, 28(2): 1-14.
Xiao Xiangning, Chen Zheng, Liu Nian. Integrated Mode and Key Issues of Renewable Energy Sources and Electric Vehicles’ Charging and Discharging Facilities in Microgrid. Transactions of China Electrotechnical Society, 2013, 28(2): 1-14.
[1] 中华人民共和国科学技术部. 《电动汽车科技发展“十二五”专项规划》[EB/OL]. [2012-03-27]. http: //www.most.gov.cn/tztg/201204/W020120503407413903488.pdf [2] 中华人民共和国国务院. 《节能与新能源汽车产业发展规划(2012—2020年)》[EB/OL]. [2012-06-28]. http://www.gov.cn/zwgk/2012-07/09/content_2179032 .htm [3] 中华人民共和国国务院. 《“十二五”国家战略性新兴产业发展规划》[EB/OL]. [2012-07-09]. .htm [4] 宋永华, 杨岳希, 胡泽春. 电动汽车电池的现状及发展趋势[J]. 电网技术, 2011, 35(4): 1-7. Song Yonghua, Yang Yuexi, Hu Zechun. Present status and development trend of batteries for electric vehicles[J]. Power System Technology, 2011, 35(4): 1-7. [5] 马钧, 年晨宁. 崇明岛2020年电动汽车可再生能源独立电网的构想[J]. 农业装备与车辆工程, 2011(2): 1-7. Ma Jun, Nian Chenning. A scheme for renewable grid for EV of 2020 in Chongming island[J]. Agricultural Equipment & Vehicle Engineering, 2011(2): 1-7. [6] 钱科军, 袁越, 石晓丹, 等. 分布式发电的环境效益分析[J]. 中国电机工程学报, 2008, 28(29): 11-15. Qian Kejun, Yuan Yue, Shi Xiaodan, et al. Environmental benefits analysis of distributed generation[J]. Proceedings of the CSEE, 2008, 28(29): 11-15. [7] 樊扬, 余欣梅, 王路. 南方电网区域发展电动汽车综合效益分析[J]. 南方电网技术, 2011, 5(04): 51-54. Fan Yang, Yu Xinmei, Wang Lu. Analysis on the comprehensive benefit of the electric vehicle development in the region of China southern power grid[J]. Southern Power System Technology, 2011, 5(04): 51-54. [8] 峁美琴, 孙树娟, 苏建徽. 包含电动汽车的风/光/储微电网经济性分析[J]. 电力系统自动化, 2011, 35(14): 30-35. Mao Meiqin, Sun Shujuan, Su Jianhui. Economic analysis of a microgrid with wind/photovoltaic/ storages and electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14): 30-35. [9] Ahmed Y S, Ganesh K V. Plug-in vehicles and renewable energy sources for cost and emission reductions[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1229-1238. [10] Ahmed Y S, Ganesh K V. Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles[J]. IEEE Systems Journal, 2012, 6(1): 103-109. [11] 刘晓飞, 张千帆, 崔淑梅. 电动汽车V2G技术综述[J]. 电工技术学报, 2012, 27(2): 121-127. Liu Xiaofei, Zhang Qianfan, Cui Shumei. Review of electric vehicle V2G technology[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 121-127. [12] 胡泽春, 宋永华, 徐智威, 等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(4): 1-10. Hu Zechun, Song Yonghua, Xu Zhiwei, et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE, 2012, 32(4): 1-10. [13] Xin L, Luiz A C L, Sheldon S W. On the suitability of plug-in hybrid electric vehicle (PHEV) charging infrastructures based on wind and solar energy[C]. Power & Energy Society General Meeting, Calgary, Canada, 2009: 1-8. [14] Qi Z, Tetsuo T, Miguel E, et al. A Study of renewable power for a zero-carbon electricity system in Japan using a proposed integrated analysis model[C]. The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, 2010: 166-170. [15] Vilayanur V V, Michael K M. Second use of transportation batteries: maximizing the value of batteries for transportation and grid services[J]. IEEE Transactions on vehicular technology, 2011, 60(7): 2963-2970. [16] Anderson H, Alexander B, Annabelle P, et al. Electric vehicle charge optimization including effects of lithium-Ion battery degradation[C]. Vehicle Power and Propulsion Conference (VPPC), Chicago, USA, 2011: 1-8. [17] 于大洋, 宋曙光, 张波, 等. 区域电网电动汽车充电与风电协同调度的分析[J]. 电力系统自动化, 2011, 35(14): 24-29. Yu Dayang, Song Shuguang, Zhang Bo, et al. Synergistic dispatch of PEVs charging and wind power in Chinese regional power grids[J]. Automation of Electric Power Systems, 2011, 35(14): 24-29. [18] 于大洋, 黄海丽, 雷鸣, 等. 电动汽车充电与风电协同调度的碳减排效益分析[J]. 电力系统自动化, 2012, 36(10): 14-18. Yu Dayang, Huang Haili, Lei Ming, et al. CO2 reduction benefit by coordinated dispatch of electric vehicle charging and wind power[J]. Automation of Electric Power Systems, 2012, 36(10): 14-18. [19] Eric S, Mohammad M H, S D J MacPherson, et al. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses[J]. IEEE Transactions on Smart Grid, 2011, 2(1): 198-204. [20] 徐智威, 胡泽春, 宋永华, 等. 充电站内电动汽车有序充电策略[J]. 电力系统自动化, 2012, 36(11): 38-43. Xu Zhiwei, Hu Zechun, Song Yonghua, et al. Coordinated charging of plug-in electric vehicles in charging stations[J]. Automation of Electric Power Systems, 2012, 36(11): 38-43. [21] 杨黎晖, 许昭, Ostergaard J, 等. 电动汽车在含大规模风电的丹麦电力系统中的应用[J]. 电力系统自动化, 2011, 35(14): 43-47. Yang Lihui, Xu Zhao, Ostergaard J, et al. Electric vehicles in Danish power system with large penetration of wind power[J]. Automation of Electric Power Systems, 2011, 35(14): 43-47. [22] 赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化. 2010, 34(20): 22-29. Zhao Junhua, Wen Fushuan, Xue Yusheng, et al. Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J]. Automation of Electric Power Systems, 2010, 34(20): 22-29. [23] John G I, Craig A P. The 2. 1kW photovoltaic electric vehicle charging station in the city of Santa Monica, California[C]. Conference Record of The 25th IEEE Photovoltaic Specialists Conference, Washington D. C., USA, 1996: 1509-1512. [24] M A Abella, F Chenlo. Photovoltaic charging station for electrical vehicles[C]. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003: 2280-2283. [25] 冯巍. 电动汽车充电站10kW光伏发电系统[J]. 电气技术, 2010(10): 94-96. Feng Wei. Electric car charging station configured with 10kW photovoltaic power generation system[J]. Electrical Engineering, 2010(10): 94-96. [26] Joseph M, Milan I, Leo C. PV plant intermittency mitigation using constant DC voltage PV and EV battery storage[C]. IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply(CITRES), Waltham, USA, 2010: 297-301. [27] 张文亮, 武斌, 李武峰, 等. 我国纯电动汽车的发展方向及能源供给模式的探讨[J]. 电网技术, 2009, 33(4): 1-5. Zhang Wenliang,Wu Bin,Li Wufeng,et al. Discussion on development trend of battery electric vehicles in China and its energy supply mode[J]. Power System Technology, 2009, 33(4): 1-5. [28] 滕乐天, 何维国, 杜成刚, 等. 电动汽车能源供给模式及其对电网运营的影响[J]. 华东电力, 2009, 37(10): 1675-1677. Teng Letian, He Weiguo, Du Chenggang, et al. Power supply modes for electrical vehicles and their impacts on grid operation[J]. East China Electric Power, 2009, 37(10): 1675-1677. [29] 周逢权, 连湛伟, 王晓雷, 等. 电动汽车充电站运营模式探析[J]. 电力系统保护与控制, 2010, 38(21): 63-66. Zhou Fengquan, Lian Zhanwei, Wang Xiaolei, et al. Discussion on operation model to the electric vehicle charging station[J]. Power System Protection and Control, 2010, 38(21): 63-66. [30] 陈良亮, 张浩, 倪峰, 等. 电动汽车能源供给设施建设现状与发展探讨[J]. 电力系统自动化, 2011, 35(14): 11-17. Chen Liangliang, Zhang Hao, Ni Feng, et al. Present situation and development trend for construction of electric vehicle energy supply infrastructure[J]. Automation of Electric Power Systems, 2011, 35(14): 11-17. [31] 黄李, 张维戈, 姜久春. 2008年奥运会电动车充电站规划及运营模式方案[J]. 现代交通技术, 2007(4): 73-75. Huang Li,Zhang Weige,Jiang Jiuchun. The design and the running mode of the vehicle charge-station for the 2008 Olympic games[J]. Modern Transportation, 2007(4): 73-75. [32] 康继光, 卫振林, 程丹明, 等. 电动汽车充电模式与充电站建设研究[J]. 电力需求侧管理, 2009, 11(5): 69-71. Kang Jiguang, Wei Zhenlin, Cheng Danming, et al. Research on electric vehicle charging mode and charging stations construction[J]. Demand Side Management, 2009, 11(5): 69-71. [33] 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34(11): 126-130. Tian Liting, Shi Shuanglong, Jia Zhuo. A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34(11): 126-130. [34] 王成山, 杨占刚, 王守相, 等. 微网实验系统结构特征及控制模式分析[J]. 电力系统自动化, 2010, 34(1): 99-105. Wang Chengshan, Yang Zhangang, Wang Shouxiang, et al. Analysis of structural characteristics and control approaches of experimental microgrid systems[J]. Automation of Electric Power Systems, 2010, 34(1): 99-105. [35] Liu C H, Chau K T, Diao C X, et al. A new DC micro-grid system using renewable energy and electric vehicles for smart energy delivery[C]. 2010 IEEE Vehicle Power and Propulsion Conference (VPPC), Lille, France, 2010: 1-6. [36] Kyohei K, Tomonobu S, Atsushi Y, et al. A high quality power supply system with DC smart grid[C]. IEEE PES Transmission and Distribution Conference and Exposition, New Orleans, USA, 2010: 1-6. [37] Gustavo G, Christopher H, Ross K, et al. Control strategy of a multi-port, grid connected, direct-dc PV charging station for plug-in electric vehicles[C]. IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, USA, 2010: 1173-1177. [38] K M Liyanage, A Yokoyama, Y Ota, et al. Impacts of communication delay on the performance of a control scheme to minimize power fluctuations introduced by renewable generation under varying V2G vehicle pool size[C]. 2010 First IEEE International Conference on Smart Grid Communications (SmartGridComm), Gaithersburg, USA, 2010: 85-90. [39] J A P Lopes, P M R Almeida, F J Soares. Using vehicle-to-grid to maximize the integration of intermittent renewable energy resources in islanded electric grids[C]. 2009 International Conference on Clean Electrical Power, Capri, 2009: 290-295. [40] Li Z, F R Yu, Bin N, et al. Stochastic charging management for plug-in electric vehicles in smart microgrids fueled by renewable energy sources[C]. 2011 IEEE Online Conference on Green Communications (GreenCom), New York, USA, 2011: 7-12. [41] Yutaka O, Haruhito T, Tatsuhito N, et al. Effect of autonomous distributed vehicle-to-grid (V2G) on power system frequency control[C]. 2010 International Conference on Industrial and Information Systems (ICIIS), Mangalore, India, 2010: 481-485. [42] Ota Y, Taniguchi H, Nakajima T, et al. Autonomous distributed V2G (vehicle-to-grid) considering charging request and battery condition[C]. 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe(ISGT Europe), Gothenburg, Sweden, 2010: 1-6. [43] Yutaka O, Haruhito T, Tatsuhito N, et al. An autonomous distributed vehicle-to-grid control of grid-connected electric vehicle[C]. International Conference on Industrial and Information Systems (ICIIS), Sri Lanka, 2009: 414-418. [44] Masaru I, Tianmeng S, Hiroaki N. A simulation study of electric power leveling using V2G infrastructure[C]. IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, Australia, 2011: 3224-3229. [45] Pedro G, Cristina O M, Michel F. Making vehicles transparent through V2V video streaming[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 930-938. [46] Harun T, Seddik B, Daniel C, et al. Modeling of system components for vehicle-to-grid(V2G) and vehicle-to-home(V2H) applications with plug-in hybrid electric vehicles (PHEVs)[C]. 2012 IEEE PES Innovative Smart Grid Technologies(ISGT), Washington D. C., USA, 2012: 1-8. [47] Pang C, Dutta P, Kezunovic M. BEVs/PHEVs as dispersed energy storage for V2B uses in the smart grid[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 473-481. [48] S Diaf, D Diaf, M Belhamel, et al. A methodology for optimal sizing of autonomous hybrid PV/wind system[J]. Energy Policy, 2007, 35(11): 5708-5718. [49] Eftichios K, Dionissia K, Antonis P, et al. Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms[J]. Solar Energy, 2006, 80(9): 1072-1088. [50] 马溪原, 吴耀文, 方华亮, 等. 采用改进细菌觅食算法的风/光/储混合微电网电源优化配置[J]. 中国电机工程学报, 2011, 31(25): 17-25. Ma Xiyuan, Wu Yaowen, Fang Hualiang, et al. Optimal sizing of hybrid solar-wind distributed generation in an islanded microgrid using improved bacterial foraging algorithm[J]. Proceedings of the CSEE, 2011, 31(25): 17-25. [51] 刘自发, 张伟, 王泽黎, 等. 基于量子粒子群优化算法的城市电动汽车充电站优化布局[J]. 中国电机工程学报, 2012, 32(22): 39-45. Liu Zifa, Zhang Wei, Wang Zeli, et al. Optimal planning of charging station for electric vehicle based on quantum PSO algorithm[J]. Proceedings of the CSEE, 2012, 32(22): 39-45. [52] 唐现刚, 刘俊勇, 刘友波, 等. 基于计算几何方法的电动汽车充电站规划[J]. 电力系统自动化, 2012, 36(8): 24-30. Tang Xiangang, Liu Junyong, Liu Youbo, et al. Electric vehicle charging station planning based on computational geometry method[J]. Automation of Electric Power Systems, 2012, 36(8): 24-30. [53] 李如琦, 苏浩益. 基于排队论的电动汽车充电设施优化配置[J]. 电力系统自动化, 2011, 35(14): 58-61. Li Ruqi, Su Haoyi. Optimal allocation of charging facilities for electric vehicles based on queuing theory[J]. Automation of Electric Power Systems, 2011, 35(14): 58-61. [54] 刘志鹏, 文福拴, 薛禹胜, 等. 电动汽车充电站的最优选址与定容[J]. 电力系统自动化, 2012, 36(3): 54-59. Liu Zhipeng, Wen Fushuan, Xue Yusheng, et al. Optimal siting and sizing of electric vehicle charging stations[J]. Automation of Electric Power Systems, 2012, 36(3): 54-59. [55] 任玉珑, 史乐峰, 张谦, 等. 电动汽车充电站最优分布和规模研究[J]. 电力系统自动化, 2011, 35(14): 53-57. Ren Yulong, Shi Lefeng, Zhang Qian, et al. Optimal distribution and scale of charging stations for electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14): 53-57. [56] 吴春阳, 黎灿兵, 杜力, 等. 电动汽车充电设施规划方法[J]. 电力系统自动化, 2010, 34(24): 36-40. Wu Chunyang, Li Canbing, Du Li, et al. A method for electric vehicle charging infrastructure planning[J]. Automation of Electric Power Systems, 2010, 34(24): 36-40. [57] Tang X, Liu N, Zhang J H, et al. Capacity optimization configuration of electric vehicle battery exchange stations containing photovoltaic power generation[C]. 2012 7th International Power Electronics and Motion Control Conference (IPEMC), Harbin, China, 2012: 2061-2065. [58] Zhang Y D, Liu N, Zhang J H. Optimum sizing of non-grid-connected power system incorporating battery-exchange stations[C]. 2012 7th International Power Electronics and Motion Control Conference (IPEMC), Harbin, China, 2012: 2123-2128. [59] Xiao R, Liu N, Yang J Y, et al. Multi-objective optimal sizing of EV battery-exchange stations system with photovoltaic generation using NSGA-II[C]. 2012 International Conference on Electronics Information and Electrical Engineering (EIEE2012), Changsha, China, 2012: 184-188. [60] H Roth, P Kuhn, B G Neudecker. Sustainable mobility—cost-effective and zero emission integra- tion of Germany's EV fleet[C]. 2009 International Conference on Clean Electrical Power, Capri, 2009: 207-211. [61] Sun Y, Liu N, Yang J Y, et al. Research on control strategy of electric vehicle charging and discharging in microgrid[C]. The 5th China International Conference on Electricity Distribution(CICED), Shanghai, China, 2012. [62] Tulga E, Changsun A, Ian A H, et al. Impact of controlled plug-in EVs on microgrids: a military microgrid example[C]. 2011 IEEE Power and Energy Society General Meeting, San Diego, USA, 2011: 1-7. [63] A S Masoum, S Deilami, P S Moses, et al. Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimization considering voltage regulation[J]. IET Generation, Transmission & Distribution, 2011, 5(8): 877-888. [64] Mehdi E A, Kent C, Jason S. Rapid-charge electric- vehicle Stations[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1883-1887. [65] Junseok S, Amir T, Dave T, et al. A rapid charging station with an ultracapacitor energy storage system for plug-in electrical vehicles[C]. 2010 International Conference on Electrical Machines and Systems (ICEMS), Incheon, Korea, 2010: 2003-2007. [66] 刘念,唐宵,段帅,等. 考虑动力电池梯次利用的光伏换电站容量优化配置方法[J]. 中国电机工程学报, 2013, 33(4): 34-44. Liu Nian, Tang Xiao, Duan Shuai, et al. Capacity optimization method for PV-based battery swapping stations considering second-use of electric vehicle batteries[J]. Proceedings of the CSEE, 2013, 33(4): 34-44. [67] 赵上林, 吴在军, 胡敏强, 等. 关于分布式发电保护与微网保护的思考[J]. 电力系统自动化, 2010, 34(1): 73-77. Zhao Shanglin, Wu Zaijun, Hu Minqiang, et al. Thought about protection of distributed generation and microgrid[J]. Automation of Electric Power Systems, 2010, 34(1): 73-77. [68] Daniel S, Lennart S, Ambra S. Protection of low- voltage DC microgrids[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1045-1053. [69] Hannu J L. Protection principles for future microgrids[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 2910-2918. [70] Eric S, S S Venkata, Joydeep M. Microgrid protection using communication-assisted digital relays[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2789-2796. [71] Taha S U, Cagil O, Aladin Z. Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1560-1567. [72] André P, Christos S I, Paulo F. Introduction of electric vehicles in an island as a driver to increase renewable energy penetration[C]. IEEE International Conference on Sustainable Energy Technologies (ICSET), Singapore, 2008: 1108-1113. [73] A Bedir, B Ozpineci, J E Christian. The impact of plug-in hybrid electric vehicle interaction with energy storage and solar panels on the grid for a zero energy house[C]. 2010 IEEE PES Transmission and Distribution Conference and Exposition, New Orleans, USA, 2010: 1-6. [74] 苗轶群, 江全元, 曹一家. 基于微电网的电动汽车换电站运营策略[J]. 电力系统自动化, 2012, 36(15): 33-38. Miao Yiqun, Jiang Quanyuan, Cao Yijia. Operation strategy for battery swap station of electric vehicles based on microgrid[J]. Automation of Electric Power Systems, 2012, 36(15): 33-38. [75] 曹一家, 苗轶群, 江全元, 等. 含电动汽车换电站的微电网孤岛运行优化[J]. 电力自动化设备, 2012, 32(5): 1-6. Cao Yijia, Miao Yiqun, Jiang Quanyuan, et al. Optimal operation of islanded microgrid with battery swap stations[J]. Electric Power Automation Equipment, 2012, 32(5): 1-6. [76] 杨向真, 苏建徽, 丁明, 等. 面向多逆变器的微电网电压控制策略[J]. 中国电机工程学报, 2012, 32(7): 7-13. Yang Xiangzhen, Su Jianhui, Ding Ming. Voltage control strategies for microgrid with multiple inverters[J]. Proceedings of the CSEE, 2012, 32(7): 7-13. [77] Hiroaki K, Yushi M, Toshifumi I. Low-voltage bipolar-type DC microgrid for super high quality distribution[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3066-3075. [78] Milan P, Timothy C G. High-quality power generation through distributed control of a power park microgrid[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1471-1482. [79] T K Panigrahi, S Chowdhury, S P Chowdhury, et al. Control & reliability issue of efficient microgrid operation using hybrid distributed energy resources[C]. 2006 IEEE PES Power Systems Conference and Exposition(PSCE), Atlanta, USA, 2006: 797-802. [80] 周念成, 池源, 王强钢. 含非线性及不平衡负荷的微电网控制策略[J]. 电力系统自动化, 2011, 35(9): 61-66. Zhou Niancheng, Chi Yuan, Wang Qianggang. Control strategies for microgrid containing non-linear and unbalanced loads[J]. Automation of Electric Power Systems, 2011, 35(9): 61-66. [81] 吕志鹏, 罗安, 荣飞, 等. 电网电压不平衡条件下微网PQ控制策略研究[J]. 电力电子技术, 2010, 44(6): 71-74. Lv Zhipeng, Luo An, Rong Fei. Micro-grid PQ control strategy analysis under utility voltage imbalance[J]. Power Electronics, 2010, 44(6): 71-74. [82] 何吉彪, 程浩忠. 含微网配电网规划中的电能质量综合评估[J]. 电网技术, 2012, 36(8): 209-214. He Jibiao, Cheng Haozhong. Comprehensive power quality assessment on distribution network planning containing micro-grid[J]. Power System Technology, 2012, 36(8): 209-214. [83] Sudipta C, Manoja D W, M G Simoes. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109. [84] 李娜, 黄梅. 不同类型电动汽车充电机接入后电力系统的谐波分析[J]. 电网技术, 2011, 35(1): 170-174. Li Na, Huang Mei. Analysis on harmonics caused by connecting different types of electric vehicle chargers with power network[J]. Power System Technology, 2011, 35(1): 170-174. [85] 张谦, 韩维健, 俞集辉, 等. 电动汽车充电站仿真模型及其对电网谐波影响[J]. 电工技术学报, 2012, 27(2): 160-164. Zhang Qian, Han Weijian, Yu Jihui, et al. Simulation model of electric vehicle charging station and the harmonic analysis on power grid[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 160-164. [86] 黄少芳. 电动汽车充电机(站)谐波问题的研究[D]. 北京: 北京交通大学, 2008. [87] Peter R, Damian F, Andrew K. Impact assessment of varying penetrations of electric vehicles on low voltage distribution systems[C]. IEEE Power and Energy Society General Meeting, Minneapolis, USA, 2010: 1-6. [88] Mukesh S, Indrani K, Praveen K. Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss[C]. 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC), Ohrid, Macedonia, 2010: 196-203. [89] Putrus G A, Suwanapingkarl P, Johnston D, et al. Impact of electric vehicles on power distribution networks[C]. 2009 IEEE Vehicle Power and Propulsion Conference(VPPC), Michigan, USA, 2009: 827-831. [90] 肖湘宁, 等. 电能质量分析与控制[M]. 北京: 中国电力出版社, 2004.