Abstract:Fuzzy adaptive impedance control strategy is proposed based on neural network visual servoing in unknown environment. Firstly, the one-to-one mapping relations between the image features variation rate of the curved line and the joint angular velocity of the robot are derived. Secondly, an impedance control model is obtained to control the force servoing of the robot, and the impedance model parameters are adjusted fuzzily according to the change of forces in contact to reduce their disturbance in constraint motion. Lastly, the effectiveness of the presented approach is verified by using a 6 DOF robot with a CCD camera and a force/torque sensor installed in its end effector.
李二超, 李战明, 李炜. 基于神经网络视觉伺服的机器人模糊自适应阻抗控制[J]. 电工技术学报, 2011, 26(4): 40-43.
Li Erchao, Li Zhanming, Li Wei. Robotic Fuzzy Adaptive Impedance Control Based on Neural Network Visual Servoing. Transactions of China Electrotechnical Society, 2011, 26(4): 40-43.
[1] 张锟, 韦庆, 常文森. 一种基于力/位混合控制进行插孔作业的策略[J]. 机器人, 2002, 24(1): 44-48. [2] 魏立新, 李二超, 王洪瑞. 基于CMAC在线自学习模糊自适应控制的机器人力/位置鲁棒控制[J]. 电工技术学报, 2005, 20(5): 40-44. [3] Namiki A, Komuro T, Ishikawa M. High-speed sensory- motor fusion for robotic grasping[J]. Measurement Science and Technology, 2002, 13(11): 1767-1778. [4] 席文明, 朱剑英. 基于预测的立体视觉/力反馈研 究[J]. 仪器仪表学报, 2004, 25(1): 48-52. [5] Xiao N F, Saeid Nahavandi. Learning-based visual and force servoing control of a robot in an unknown environment[J]. System Engineering and Electronic Technology, 2004, 15(2): 171-178. [6] Xiao N F, Saeid Nahavandi. Visual feedback control of a robot in an unknown environment[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(7-8): 509-516. [7] 李二超, 李战明, 李炜. 未知环境下的机器人视觉/力觉混合控制[J]. 控制与决策, 2010, 25(3): 430-432. [8] António Lopes, Fernando Almeida. A force-impedance controlled industrial robot using an active robotic auxiliary device[J]. Robotics and Computer- Integrated Manufacturing, 2008, 24(3): 299-309. [9] Huang L, Ge S S, Lee T H. Fuzzy unidirectional force control of constrained robotic manipulators[J]. Fuzzy Sets and System, 2003, 134(1): 135-146. [10] Tsuji T, Tanaka Y. On-line learning of robot arm impedance using neural networks[J]. Robotics and Autonomous Systems, 2005, 52(4): 257-271. [11] Wim Meeussen, Ernesto Staffetti, Herman Bruyninckx. Integration of planning and execution in force controlled compliant motion[J]. Robotics and Autonomous Systems, 2008, 56(5): 437-450. [12] Joseph Haggege, Mohamed Benrejeb, Pierre Borne. On the design of a neuron-fuzzy controller- application to the control of a bioreactor[J]. Journal of Systems Science and Systems Engineering, 2005, 14(4): 417-435. [13] 乔兵. 智能机器人主动力/位学习控制研究[D]. 南京: 南京航空航天大学, 1999.