Abstract:Aiming at the nonlinearity and nonstationarity of wind speed sequences, a novel multi-step prediction for wind speed is presented. The prediction is primarily based on empirical mode decomposition (EMD). By means of the EMD technique, the original wind speed sequences are firstly decomposed into a series of functions with more stationary variation. Thus the interferences among the characteristic information embedded in the wind speed can be weakened. Then these functions are reconstructed into three components(high-middle-low frequency components) according to their run-lengths. As a result, not only the characteristics become more centralized, but the predicted components can be greatly reduced. After that, three multi-step prediction models are built on the basis of their respective variation rules. Finally, the prediction values corresponded to the three components are adaptively superposed to obtain the predicted wind speed. A real example is given in this paper. The obtained results show that the proposed approach possesses higher accuracy and the prediction performance is satisfied when the wind speed sharply fluctuates.
刘兴杰, 米增强, 杨奇逊, 樊小伟. 一种基于EMD的短期风速多步预测方法[J]. 电工技术学报, 2010, 25(4): 165-170.
Liu Xingjie, Mi Zengqiang, Yang Qixun, Fan Xiaowei. A Novel Multi-Step Prediction for Wind Speed Based on EMD. Transactions of China Electrotechnical Society, 2010, 25(4): 165-170.
[1] World Wind Energy Association. Wind turbines generate more than 1% of the global electricity [EB/OL]. (2008-02-21)[2008-03-20]. http: //www. wwindea. Org. [2] 施鹏飞. 2007年中国风电场装机容量统计(征求意见稿). http: //cwea. org. cn. [3] 杨秀媛, 肖洋, 陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程学报, 2005, 25(11): 1-5. [4] 刘永前, 韩爽, 胡永生. 风电场出力短期预报研究综述[J]. 现代电力, 2007, 24(90): 6-11. [5] 韩爽. 风电场功率短期预测方法研究[D]. 北京: 华北电力大学, 2008. [6] Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al. Short-term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68. [7] Bossanyi E A. Short-term wind prediction using Kalman filters[J]. Wind Engineering, 1985, 9(1): 1-8. [8] Torres J L, Garcia A, Blas M De, et al. Forecast of hourly average wind speed with arma models in Navarre(spain)[J]. Solar Energy, 2005, 79(1): 65-77. [9] Kariniotakis G, Stavrakis G, Nogaret E. Wind power forecasting using advanced neural network models[J]. IEEE Trans. on Energy Conversion, 1996, 11(4): 762- 767. [10] Damousis I G. Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]. 22nd IEEE Power Engineering Society International Conference, 2001, 5(20-24): 63-69. [11] 刘永前, 韩爽, 杨勇平, 等. 提前三小时风电机组出力组合预报研究[J]. 太阳能学报, 2007, 28(8): 839-843. [12] 潘迪夫, 刘辉, 李燕飞. 风电场风速短期多步预测改进算法[J]. 中国电机工程学报, 2008, 28(26): 87- 91. [13] 杨培才, 周秀骥. 气候系统的非平稳行为和预测理论[J]. 气象学报, 2005, 63(5): 556-570. [14] Huang N E, Shen Z, Long S, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A, 1998, 454: 903-995. [15] 王振龙, 顾岚. 时间序列分析[M]. 北京: 中国统计出版社, 2000. [16] 林树宽, 杨玫, 乔建忠, 等. 一种非线性非平稳时间序列预测建模方法[J]. 东北大学学报(自然科学版), 2007, 28(3): 325-328. [17] 徐国祥. 统计预测与决策[M]. 上海: 上海财经大学出版社, 2001. [18] 杨位钦, 顾岚. 时间序列分析与动态数据建模[M]. 北京: 北京工业大学出版社, 1986.