Abstract:The objective function of the nonlinear programming method, used to optimize power system stabilizer(PSS) parameters under multiple operating conditions in a multi-machine system, is modified to improve the convergence property. The improved objective function is composed of the real part of all unstable and some stable eigenvalues, together with damping ratios of all eigenvalues dissatisfied and some eigenvalues satisfied with the system dynamic quality. These considered eigenvalues are multiplied by weighting coefficients determined by their corresponding stabilization degree. Based on an eight-machine system, convergence properties of the quasi-Newton method used to solve the optimization problem are discussed in details, with different eigenvalue range values and several weighting coefficient expressions, including the inverse function, linear function and so on. From these testing computations, both the weighting coefficient selecting rules and the preferable eigenvalue range are concluded. The results show that the convergence property can be improved efficiently by the proposed approach.
吉平, 王克文, 谢志棠. 多运行方式下PSS参数优化算法的收敛特性改善[J]. 电工技术学报, 2009, 24(3): 171-177.
Ji Ping, Wang Kewen, Tse Chitong. Improvement of Convergence Property in the PSS Parameter Optimization Under Multiple System Operating Conditions. Transactions of China Electrotechnical Society, 2009, 24(3): 171-177.
[1] Tse C T, Tso S K. Refinement of conventional PSS design in multimachine system by modal analysis[J]. IEEE Transactions on Power System, 1993, 8(2): 598- 605. [2] Sekita M, Xia Y, Shimomura M. A new design mehtod for digital PSS[C]. International Conference POWERCON’98, Beijing, China, 1998: 795-799. [3] Tse C T, Wang K W, Chung C Y, et al. Robust PSS design by probabilistic eigenvalue sensitivity analysis[J]. Electric Power System Research, 2001, 59(1): 47-54. [4] Voumas C D, Maratos N, Papadias B C. Power system stabilizer co-ordination using a parameter optimization method[C]. International Conference CONTROL’94, Cventry, UK, 1994, 1: 403-408. [5] Maslennikov V A, Ustinov S M. Method and software for coordinated tuning of power system regulators[J]. IEEE Transactions on Power Systems, 1997, 12(4): 1419-1424. [6] Hong Yingyi, Wu Wenching. A new approach using optimization for tuning parameters of power system stabilizers[J]. IEEE Transaction on Energy Conversion, 1999, 14(3): 780-786. [7] 王克文, 谢志棠, 史述红, 等. 基于概率特征根分析的电力系统稳定器参数设计[J]. 电力系统自动化, 2001, 25(11): 20-23. [8] Tse C T, Wang K W, Chung C Y, et al. Parameter optimization of robust power system stabilizers by probabilistic approach[J]. IEE Pro. Gener. Transm. and Distrib., 2000, 147(2): 69-75. [9] Chung C Y, Wang K W, Tse C T, et al. Probabilistic eigenvalue sensitivity analysis and PSS design in multimachine systems[J]. IEEE Transactions on Power Systems, 2003, 18(4): 1439-1445. [10] Wang K W, Tse C T, Tsang K M. Algorithm for power system dynamic stability studies taking account the variation of load power[J]. Electric Power Systems Research, 1998, 46(2): 221-227. [11] Chung C Y, Wang K W, Tse C T, et al. Power system stabilizer (PSS) design by probabilistic sensitivity indexes (PSIs)[J]. IEEE Transactions on Power Systems, 2002, 17(3): 688-693. [12] Wang K W, Chung C Y, Tse C T, et al. Multimachine eigenvalue sensitivities of power system parameter[J]. IEEE Transactions on Power Systems, 2000, 15(2): 741-747. [13] 方思立, 朱方. 电力系统稳定器的原理及其应用[M]. 北京:中国电力出版社, 1996.