摘要 双酚A型环氧树脂(DGEBA)因其优异的综合性能被广泛应用于环氧绝缘电气设备中,但由于环氧树脂固化后会形成永久性的三维交联网络,导致大量电气设备退役后无法实现高效降解和回收利用,造成严重的资源浪费和环境污染。该文采用香草醛为原料,同时引入动态亚胺键制备可降解香草醛基类玻璃化环氧树脂(EDV)。将DGEBA和EDV进行共混,试验分析不同共混比例下树脂的电学、热学、力学基本服役特性,并对其降解回收利用性能进行探索。研究结果表明:当DGEBA和EDV摩尔比例为0.75:0.25时,共混树脂具有优异的热力学性能,其中玻璃化转变温度高达159℃。含EDV的环氧树脂均表现出降解和自修复特性,最快可在10 h内完成降解,在180℃高温下可在1 h内完成自修复。含EDV的环氧树脂表现出优异的物理化学回收性能,回收树脂的最大电气击穿强度保持在98%以上。含动态亚胺键的香草醛类玻璃化树脂体系有望为电气设备材料的环保升级提供新的选择方向和技术支撑。
关键词:类玻璃化高分子(Vitrimer) 环氧树脂 香草醛 亚胺键 降解回收
环氧树脂(Epoxy Resin, EP)是一种三维交联的高分子材料,具有优异的粘结强度、热学稳定性、力学性能、耐候性及电绝缘性能[1-2],广泛应用在复合绝缘材料[3-5]、电子元器件封装[6]、干式电抗器和干式变压器[7-8]等电气设备中。目前市面上超过90%的环氧树脂为双酚A二缩水甘油醚(Diglycidyl Ether of Bisphenol A, DGEBA),其是一种石油基化合物,在消耗大量化石资源的同时也造成了较大的碳排放和环境污染。随着全球能源危机的加剧和环境的日益恶化,以环境友好、可再生资源为原料研制出可替代或部分替代DGEBA的生物基环氧树脂,已成为实现环氧电气设备环保化的重要途径之一[9]。
生物基环氧树脂是以可再生资源为原料,通过环氧化手段制备的热固性环氧树脂。目前国内外研究人员针对松香[10]、香草醛[11-12]、衣康酸[13-14]、异山梨醇[15]等生物质资源衍生物合成环氧树脂开展了广泛研究,部分生物基环氧树脂在热力学性能及绝缘性能等方面可与传统的双酚A型环氧树脂相媲美。文献[16]合成的松香基环氧树脂由于具有氢菲环结构,与传统的DGEBA树脂相比脆性较大,韧性不足。Niu Haoxin等利用香兰素为原料制备了生物基固化剂,固化后的环氧树脂具有优异的阻燃性能和综合性能[17]。Ma Songqi等合成了含双键的衣康酸基环氧树脂,结果显示衣康酸基环氧树脂的玻璃化转变温度(Tg)和力学性能与传统的DGEBA相当甚至更高,同时粘结性能优异[18]。然而,生物基环氧树脂固化后仍会形成三维交联网络,具有不溶不熔的特性,无法实现高效降解和回收利用。
L. Leibler教授课题组在2011年首次提出类玻璃化高分子(Vitrimer)的概念[19],采用脂肪酸/酸酐固化环氧树脂,在特定的条件下酯键具有动态交换的能力。随着对动态键研究的深入,共价键从最初的酯键[20-21]逐步扩展为二硫键[22-23]、亚胺键[24-25]、缩醛键[26-27]、Diels-Alder加成结构[28]、硼酸酯键[29-30]等,这些内部共价键可以在一定的刺激条件(如热、光等)下发生可逆“断裂”和“结合”,赋予材料加工重塑性,为其降解回收提供可能[31-32]。基于动态酯键的环氧树脂通常具有优异的降解性能和自愈合性能,然而其降解和合成需要依赖催化剂[33-34]。含二硫键的Vitrimer树脂自修复和热力学性能良好,易于回收降解,但经济性较差[35-36]。相比之下,亚胺键来源广泛、合成简单,在动态交换的过程中无需高温和催化剂,可赋予环氧树脂易延展加工、高刚性的特点。
香草醛,是目前工业中唯一可以大规模生产且含芳香环的生物质化合物,因其反应活性强、结构简单,经常被用来开发高性能环氧树脂[37-38]。Liu Xiaohong等利用香草醛和胺类固化剂合成了具有动态亚胺键的生物基类玻璃高分子,材料表现出快速的应力松弛行为和优良的自修复性、重塑性、可焊接性,并显示出可降解性和再循环利用的潜力[39]。Ma Jinpeng等以香草醛为原料缩合成席夫碱环氧单体,固化后的树脂表现出优异的力学性能和固有阻燃特性,残碳率高达41.77%,并在温和的条件下于6 h内实现完全降解[40]。Chen Picheng等利用共轭结构的电子离域效应来协调交联点的设计,构造了三种高韧性可降解的香草醛基环氧树脂,表现出良好的焊接、愈合和形状记忆性能,但合成的环氧树脂降解依赖强酸,溶剂不便于回收,难以适用于电气工程领域的回收[41]。目前,部分香草醛基亚胺键环氧树脂表现出优异的热力学性能和可降解能力,但无法兼具优良的力学性能和可循环回收的温和降解条件,同时对于香草醛基动态共价键树脂在电气性能领域的研究仍相对有限[42]。因此,设计、合成能够满足高性能和功能化要求并实现降解回收利用的生物基环氧树脂仍然是一大挑战,是拓宽生物基高分子材料在电气设备中的应用范围并提升其对石油基高分子材料竞争优势的关键问题。
为逐步减少电气设备对化石能源的依赖,并在保持传统双酚A型环氧树脂高性能的同时改善其难以降解的问题,本文合成了兼具优异的电气性能和有效降解自修复性能的环氧固化物,通过将含有亚胺键的香草醛基化合物与传统双酚A型环氧树脂进行共混改性,试验分析聚合物的固化动力学、热力学性能变化规律和电气特性。此外,通过物理热压回收和化学降解回收两种方法研究了Vitrimer混合体系的回收利用性能,探索基于亚胺键的类玻璃化环氧树脂在电气工程领域的适用性,为电气工程领域的绿色技术发展提供有益的参考。
本文采用的原材料为双酚A型环氧树脂,环氧值范围为4.8~5.4 mmol/g,分析纯,上海树脂厂;氢氧化钠溶液(NaOH,40%)、香草醛、乙醇(C2H6O)、对氨基苯酚、四丁基溴化铵、环氧氯丙烷、正己胺(C6H15N)、乙二醇(C2H6O2)、二甲基亚砜(Dimethyl Sulfoxide, DMSO)、N,N-二甲基甲酰胺(N,N-Dimethylformamide, DMF)、N-甲基吡咯烷酮(N-Methylpyrrolidone, NMP)、二甲苯(C8H10),分析纯,购自中国阿拉丁试剂公司;固化剂甲基六氢苯酐(Methyl Hexahydrophthalic Anhydride, MHHPA)、促进剂1-(2-氰基乙基)-2-乙基-4-甲基咪唑(EMIP,纯度≥98%)和2,4,6-三(二甲氨基甲基)苯酚(DMP-30,纯度≥96%),购自上海麦克林生化科技有限公司。
香草醛基环氧单体(EDV)是先由香草醛和对氨基苯酚反应生成香草醛二酚单体(DV),再经环氧氯丙烷环氧化合成,具体合成步骤参见文献[43]。目前环氧绝缘电气设备广泛采用双酚A型环氧树脂,固化剂为MHHPA,促进剂为DMP-30。本文共设置四个香草醛树脂体系,采用固化剂MHHPA和促进剂EMIP固化香草醛基环氧树脂树脂。原料配比见表1,各个体系命名为Van-x,其中x代表各体系中所混合的香草醛基树脂的摩尔分数。同时设置对照为传统的双酚A型环氧树脂,即Van-0。表1中,m为各体系中促进剂占总组分的质量分数;ni为物质i在各体系中的物质的量。
表1 Van-x不同体系配比
Tab.1 Different system ratio of Van-x
体系促进剂m (%) Van-01:0:2DMP-300.5 Van-0.250.75:0.25:2EMIP1 Van-0.50.5:0.5:2EMIP1 Van-0.750.25:0.75:2EMIP1 Van-10:1:2EMIP1
将DGEBA和EDV按照表1所示比例混合,并将混合物以1:2的摩尔比与固化剂MHHPA熔融混合均匀,加入对应的促进剂,充分搅拌至均一,在真空干燥箱中50℃条件下恒温抽真空5 min,脱除气泡,随即迅速将其倒入预热好的模具中,再次以50℃恒温抽真空10 min后放于干燥箱中升温固化。固化条件为110℃/2 h+140℃/5 h。待固化结束后,自然冷却至室温,脱模即可获得Vitrimer树脂试样。Van-x体系合成过程如图1所示。
图1 Van-x体系合成过程
Fig.1 Sample preparation process of biobased vitrimer material
(1)结构表征:采用日本-岛津-IRTracer100进行红外光谱测试,分辨率为4 cm-1,测试范围为400~4 000 cm-1。采用布鲁克-500M进行核磁测试,氢谱扫谱16次,碳谱扫描512次,以氘代二甲基亚砜(DMSO-d6)为溶剂。采用盐酸丙酮法测定环氧值。
(2)凝胶率测试:制备统一尺寸的样品并称重得到质量为W1,将其浸润于有机溶剂中,放置一周,置于80℃烘箱烘干至恒重W2。根据式(1)计算样品的凝胶率G。
(1)
(3)差示扫描量热(Differential Scanning Calorimeter, DSC)测试:采用DSC3500进行固化动力学研究,称量5~10 mg样品,氮气流速为20 mL/min,设置升温速率为5、10、15、20℃/min,起始温度为25℃,终止温度为250℃。
(4)热重分析(Thermogravimetric Analysis, TGA):采用TGA4000测试,升温速率为10℃/min。氮气气氛,测试温度为30~800℃。
(5)动态力学分析(Dynamic Mechanical Analysis, DMA):采用动态热机械分析仪(TA Q800, USA),设置单悬臂模式,升温速率为5℃/min,测试温度范围为30~250℃,频率为10 Hz。设置万能拉伸试验机载荷加载速率分别为5 mm/min、2 mm/min进行拉伸弯曲试验。
(6)电气性能测试:工频击穿电压测试采用尺寸为15 mm×15 mm×1 mm的方形试样,升压速率恒为2 kV/s。水扩散泄漏电流测试在MS2621VS测试仪上进行,制备直径为50 mm、高为30 mm的圆柱形试样,浸入质量分数为0.1%的NaCl溶液,100℃下水煮(100±0.5) h,试验电压为12 kV,升压速率为 2 kV/s,耐压时间为1 min。在YG9100全自动抗干扰精密介质损耗测试仪上进行介质损耗因数测试,试验电压为1.5~3 kV。相对介电常数在Novocontrol concept 80上测试,测试温度为20℃,频率为50 Hz。
(7)降解-回收性能研究:将环氧树脂浸没在降解液中,置于100℃条件下,每30 min记录剩余质量以测试其降解性能;将降解液置于旋转蒸发仪中去除溶剂,在180℃、10 MPa下热压6 h,待降至室温后脱模,测试样品的击穿强度,以得到其化学回收性能;粉碎试样,置于铝制模具内并放在平板硫化仪上以200℃、20 MPa热压4 h,脱模得到回收样片测试击穿强度,以得到其物理回收性能。
DV和EDV的傅里叶红外谱图如图2所示。观察DV的红外谱图可发现,1 630 cm-1附近出现亚胺键的吸收峰,1 683 cm-1处未发现醛基吸收峰。对于EDV的红外谱图,1 630 cm-1附近的亚胺键吸收峰得以保留,3 300~3 600 cm-1处的羟基振动吸收峰消失,在910 cm-1处出现环氧基团的伸缩振动峰。这些结果表明,DV成功合成,EDV顺利引入环氧基团。
图2 DV和EDV的傅里叶红外谱图
Fig.2 Fourier infrared spectra of DV and EDV
DV和EDV的核磁共振氢谱和碳分别谱如附图1和附图2所示。在氢谱中,DV和EDV在化学位移3.83处出现甲氧基中氢的吸收信号,在DV谱图化学位移8.42附近观察到亚胺键上氢的吸收信号,EDV谱图中也有类似的归属信号。与此同时,DV在化学位移9.50处发现羟基的吸收信号,而EDV谱图中该处信号消失,证明EDV已被环氧化。红外谱图和核磁共振碳氢谱表明,目标产物被成功合成。经盐酸丙酮法测定环氧单体EDV的环氧值为4.82 mmol/g。
采用DSC研究混合体系的固化行为,固化曲线如附图3所示,所有曲线只呈现单一放热峰,因此在固化过程中只发生了一种开环反应。固化过程中的动态DSC曲线可以通过温度外推法拟合,拟合曲线如附图4所示,进一步得到起始固化温度Ti、峰值固化温度Tp和终止固化温度Te,数据总结于表2中。采用Kissigner方法计算反应活化能[44],计算式为
式中,β为升温速率;R为理想气体常数,R=8.314 J/(mol·K);Ea为表观活化能;A为指前因子。
表2 不同树脂体系的固化温度
Tab.2 Curing temperatures of different resin systems
体系Ti/℃Tp/℃Te/℃ Van-0104.75122.55138.30 Van-0.2596.90114.30127.25 Van-0.590.20112.30123.75 Van-0.7590.55110.65125.30 Van-193.40107.25115.30
不同环氧树脂体系的固化反应活化能如图3所示,Vitrimer体系的活化能为58.17~67.08 kJ/mol,属于亚胺键的类玻璃高分子的Ea范围内(33.5~129 kJ/mol)[45]。Vitrimer体系的活化能显著低于Van-0的活化能,Ti低至100℃以下,咪唑类催化剂与酸酐形成离子对,开环环氧基团产生新离子,通过连续的开环和酯化反应,逐步完成固化过程。
图3 不同环氧树脂体系固化反应活化能
Fig.3 Activation energy of curing reaction of different epoxy resin systems
为验证固化是否完全,针对固化样品开展红外光谱分析,结果如图4所示。所有样品中910 cm-1处的环氧基团峰消失,3 300~3 500cm-1处的羟基伸缩振动峰强度减弱,1 735 cm-1附近出现酯基特征峰,Vitrimer体系中1 623 cm-1处出现亚胺键特征峰信号,说明固化反应完全,亚胺键得以保留。
图4 环氧树脂固化后红外谱图
Fig.4 Infrared spectrum after curing of epoxy resin
凝胶率是指聚合物在有机溶剂中未被溶解的部分质量占原始质量的比例,代表交联聚合物的平均交联密度,可以用来评估聚合物的交联效果[36]。本文选择Van-0.25和Van-1两种试样进行凝胶率测试,不同树脂置于不同溶剂一周的外观变化如附图5所示,可见溶剂分子逐步进入聚合物链造成体积膨胀,产生明显的溶胀现象。依照式(1)计算凝胶率,结果如图5所示。可见所有样品的凝胶率基本维持在98%以上,进一步证明了聚合物的充分交联并且固化完全。此外,室温下两种树脂在有机溶剂中表现出一定的稳定性,未出现裂解等现象,表明样品具有优异的耐溶剂性能。
图5 不同树脂体系的凝胶率
Fig.5 Gel rate of different epoxy resin systems
2.3 热力学性能研究
玻璃化转变是非晶聚合物固有的性质,本文测定了五个体系的Tg,并按照式(3)[46]计算了五个体系的实际交联密度Ve。
(3)
式中,为DMA曲线中橡胶平台区域(Tg+30℃)的储能模量;T为热力学温度。
不同环氧树脂体系的热力学参数见表3。Van-1体系Ve最大的原因在于链段结构、分子间作用力、氢键分布会对交联密度产生一定影响[47]。不同环氧树脂体系的DMA曲线如图6所示,DSC所测试的Tg位于附图6中。可见,由DSC和DMA两种测试所得Tg的数值相差10℃,但变化规律一致,这是由于DMA和DSC测量的差异而导致[48]。一般来说,交联聚合物的玻璃化转变温度主要由其交联密度和链段结构的刚柔性决定[49]。Van-0.25体系虽然交联密度小,但其Tg明显高于Van-0,这得益于EDV中的席夫碱结构,增加了结构的刚性。虽然Van-1体系的交联密度、刚性席夫碱结构含量最大,但其拥有最大含量的甲氧基,甲氧基属于柔性结构,会降低体系的Tg。另外,EDV分子中含有更多的N、O原子,促进分子内氢键的形成,分子间作用力降低。这些因素的综合作用导致Van-1体系的Tg在一定范围内下降。本文制备的Vitrimer体系的Tg均在110℃以上,这对其在高温条件下的应用展现出良好的包容性。损耗角正切值曲线的宽度反映了样品的均匀性,观察DMA曲线可知,随着EDV含量的增加,损耗角正切值曲线的宽度范围增加,样品的均一性逐步变差,反映了EDV作为固体粉末在加工性能方面具有一定的限制[50]。
表3 不同树脂体系的热力学参数
Tab.3 Thermodynamic parameters of different resin systems
体系Ve/(mol/m3)Tg-DMA/℃Tg-DSC/℃/MPa Van-01 19714813712.59 Van-0.251 99715915721.56 Van-0.51 16215313712.36 Van-0.751 15512011911.33 Van-12 00911710519.57
图6 不同环氧树脂体系DMA曲线
Fig.6 Thermo-mechanical properties of different epoxy resin systems
不同环氧树脂体系的力学性能如图7所示。可见Van-0.25和Van-0的力学性能相当,DGEBA和EDV中含有同等含量的刚性苯环结构,亚胺键结构使得EDV基本骨架处于同一平面上,构成大π键的共轭结构,为Vitrimer体系提供了刚性。随着EDV占比提高,Vitrimer体系交联密度下降,拉伸强度和弯曲强度逐渐降低,断裂伸长率升高,但Van-1的力学性能却高于Van-0.75,维持在一定的强度,这是刚性的亚胺键和苯环与柔性的甲氧基结构两种因素相互竞争作用的结果[51]。损耗角正切值曲线的高度可以体现试样的韧性,随着EDV占比增加,损耗角正切值峰值先升后降,这与实测断裂伸长率的结果是一致的。
图7 不同环氧树脂体系的力学性能
Fig.7 Mechanical properties of different epoxy resin systems
电工绝缘材料的热稳定性关乎电力系统的安全稳定运行,采用TGA研究环氧树脂的热分解过程,根据式(4)计算五个体系的耐热指数Ts,并将最大失重分解速率Tmax、产焦率Rs总结于表4中。
式中,Td5%为失重5%时的初始分解温度;Td30%为失重30%时的初始分解温度。
表4 不同树脂体系的热稳定性能
Tab.4 Thermal stability of different resin systems
体系Td5%/℃Td30%/℃Tmax/℃Ts/℃Rs(%) Van-0367.74415.29431.33194.171.56 Van-0.25372.18413.07430.83194.385.97 Van-0.5353.67404.12419.33188.138.62 Van-0.75346.33391.73404.66183.0413.43 Van-1340.14382.23399.83179.0413.07
不同环氧树脂体系的热重曲线如图8所示。在Vitrimer体系中,Van-0.25、Van-0.5、Van-0.75、Van-1的Td5%逐渐减小,EDV含量增大对应交联密度的减小和柔性结构的增加,导致裂解温度降低,材料的热稳定性下降[43]。其中,Van-0.25的耐热性能最好,表明引入一定含量的刚性席夫碱可改善环氧树脂的热稳定性。随着EDV的增加,Rs逐渐增大,Tmax减小,Vitrimer体系的Rs至少为Van-0的3倍以上,表明引入亚胺键具有一定的阻燃优势[52]。Vitrimer树脂燃烧过程中的炭化层会形成屏障,减少可燃气体的释放,抑制凝聚相和气相之间的质量和热量传递,阻挡基体进一步降解[53]。
图8 不同环氧树脂体系的热重曲线
Fig.8 Thermogravimetric curves of different epoxy resin systems
绝缘材料的电气性能可以通过击穿强度、介电性能以及水扩散泄漏电流等测试表征。不同环氧树脂体系的电气性能如图9所示。可见Van-0~Van-1的介质损耗因数呈现先减小后升高的规律,而相对介电常数逐步升高。分子结构、分子极化率以及单位体积内的极化分子数量是影响电介质材料介电性能的重要参数[54]。为了探究分子结构对电介质材料介电性能的影响,利用Material Studio软件搭建不同树脂体系的交联模型并计算其自由体积分数,Van-0~Van-1的自由体积分数分别为34%、32%、29%、26%、24%,随着EDV含量的增加而逐步减小。由于自由体积分数减小,分子链之间的距离减小。一方面,这会导致单位体积内的极化分子数增多,极化分子来回转向的摩擦增大,增大了极化损耗和介电常数[55];另一方面,自由体积减小使得载流子的迁移效率降低,减少了材料的电导损耗[56-57]。与此同时,羟基、甲氧基等极性基团的引入增大了材料的极化程度,导致介电常数增加。由于EDV在加工过程中会引入部分杂质,随着杂质离子的增加,电导损耗增加。自由体积、极性基团以及杂质离子这几种因素的共同作用促成了材料介电性能的变化规律。
图9 不同环氧树脂体系的电气性能
Fig.9 Electrical properties of different epoxy resin systems
Vitrimer体系的击穿场强随着EDV的增加逐渐下降,皆低于Van-0的击穿场强。这是由于亚胺键键能较低,性质不够稳定,相比于—C—C—键更易在强电场下断裂[58]。同时,随着EDV含量的增加,材料的极化损耗逐步上升,最终导致材料被击穿。亚胺键会在一定条件下水解成醛和胺[59],五个树脂体系水扩散后的泄漏电流值变化相近,均维持在较小值,表明Vitrimer体系交联充分,水分子难以进入聚合物网络中。微小的电流值表明亚胺键几乎没有水解,具有一定的耐水能力。
Vitrimer环氧树脂具有可逆动态共价键,可以实现环氧树脂的降解和再利用[60-61]。含亚胺键的生物基环氧树脂可以发生胺-亚胺交换反应[62],因此采用液态胺类溶剂正己胺作为降解溶液。
亚胺键树脂降解原理如图10a所示,正己胺分子中的氨基不断地和交联网络中的胺进行置换,亚胺键仍得以保留,最终形成端基为氨基或者己基的小分子可溶物,并溶于降解液中。图10b和图10c 分别为不同环氧树脂的降解过程以及降解前后变化,可见在100℃条件下,Van-1、Van-0.75以及Van-0.5可在12 h内完成降解,Van-0.25经25 h后裂解沉积在底部。所有试样均表现为先溶胀后降解、先裂解后溶解的变化规律,降解速率大体上随着亚胺键含量的升高而加快。Van-1的高交联密度导致溶剂分子不易进入结构内部,降解初期仅表现为轻微溶胀,相比于Van-0.75降解速率有所降低。降解完成后,Vitrimer体系底部有部分沉积物,这是由于交联结构的无序性导致相邻亚胺键之间的交联单元大小不一,氨基先与亚胺键交换后,较小的分子可以溶解于降解液中,而亚胺键含量较少的树脂发生转氨反应后形成的大分子树脂固化物仍无法溶于降解液中,导致降解不完全。此外,对降解溶液进行红外光谱测试,如图10d所示,由于交联结构的无序性,降解产物并不是单一的,而是形成了端基为氨基或者己基的分子混合物,Van-0红外谱图上1 700 cm-1附近出现酰基吸收峰,固化物中的酯键与溶剂分子的氨基发生相互作用形成酰胺键,并发生部分溶解,这也是Van-0产生裂解现象的原因。
图10 不同环氧树脂体系的降解性能
Fig.10 Degradation properties of different epoxy resin systems
由于转氨反应和亚胺交换是可逆的,可以通过蒸发溶剂和粉碎热压分别实现化学回收及物理回收利用。在化学回收的过程中,经旋转蒸发仪减压蒸馏,会逐步析出块状树脂,同时可收集大部分正己胺溶剂,实现循环利用。将块状树脂粉碎后盛于铝制模具中,放置在平板硫化仪上熔融,于180℃、10 MPa的条件下热压,进一步去除溶剂,最后得到回收样品。一定压强使得分散的样品紧密结合,高温条件刺激断裂界面亚胺键动态交换速率加快,样品重新交联成型,其中部分亚胺键会发生氧化反应,导致试样的颜色加深[63]。
为验证回收利用效果,对回收后的试样进行了击穿强度测试,并与初始击穿强度进行对比分析,结果如图11所示。回收后的击穿强度保持率随着亚胺键含量的增加而升高,Van-1回收后的击穿强度与初始击穿强度相当。亚胺键的含量与动态交换效率成正比,进而影响样品的重新交联程度和回收效果。对比物理和化学回收保持率可发现,化学回收效果优于物理回收,击穿场强均保持在31 kV/mm以上。除Van-1外,其他体系的物理回收效果不理想,物理热压碎块的方式无法达到化学回收紧密结合网络的效果,碎块之间含有较大间隙,亚胺键含量也较少,充分交联重组存在困难,导致击穿强度下降,绝缘性能较差。
图11 不同环氧树脂体系回收前后击穿强度
Fig.11 Breakdown strength of different epoxy resin systems before and after recovery
动态亚胺交换反应使得材料具有一定的自修复性能。本文中,将各试样用小刀划伤,置于180℃的烘箱中,用光学显微镜观察愈合前后试样的变化。不同环氧树脂体系的自修复过程如图12所示。在高温作用下,划伤处的亚胺键发生动态交换反应,逐步愈合,并且随着亚胺键含量的增多,愈合速度加快,Van-1环氧树脂可在60 min内实现快速自愈合修复,其他Vitrimer体系均在180 min内实现愈合,而Van-0并未发生明显的自修复现象。这表明动态亚胺键使得环氧树脂具有自修复特性,对如何解决传统双酚A型热固性树脂受损后无法恢复的问题具有一定的借鉴意义。
图12 不同环氧树脂体系的自修复过程
Fig.12 Self-healing process of different epoxy resin systems
本文选取香草醛作为生物基原料,在传统的双酚A型环氧树脂中引入动态亚胺键制备了生物基类玻璃化环氧树脂。为了保证生物基材料的高性能并且改善传统环氧树脂的降解性能,将生物基环氧单体和传统环氧单体共混制备Vitrimer体系,并与传统环氧树脂的性能进行对比,得出主要结论如下:
1)Van-0.25体系的耐热性能、力学性能及电气性能最佳,但由于亚胺键含量较少,表现出较差的降解回收性能和较低的自愈合效率;Van-1全生物基树脂的综合性能虽不及传统的环氧树脂,但符合电工材料的现役要求,且表现出较佳的自修复能力和较高的回收效率。
2)证明了聚合物的玻璃化转变温度、力学性能都与交联密度和链段结构的刚柔性有关,其中Van-0.25的玻璃化转变温度和力学强度最高,表现出优异的热学稳定性,生物基树脂的引入对环氧树脂起到了一定的阻燃效果。电气性能随着亚胺键含量的增加而降低,介电性能优良,表现出一定的耐水性。
3)由于亚胺键会在高温下发生动态交换,因而本文中构建的Vitrimer体系可以进行降解回收利用和热压回收利用,其中化学回收效果良好,击穿强度维持在一定强度内。除此之外,Vitrimer体系还表现出较佳的自愈合性能,所有试样均在180 min内完成自修复。
附 录
附图1 DV和EDV的核磁共振氢谱
App.Fig.1 Hydrogen spectra of DV and EDV
附图2 DV和EDV的核磁共振碳谱
App.Fig.2 Carbon spectra of DV and EDV
附图3 不同环氧树脂的动态热谱图
App.Fig.3 Dynamic thermal profiles of different epoxy resins
附图4 固化温度拟合曲线
App.Fig.4 Curing temperature fitting curves
附图5 不同环氧树脂置于不同溶剂一周的外观变化
App.Fig.5 Changes in appearance of different epoxy resins before and after one week in different solvents
附图6 不同树脂体系的玻璃化转变温度(DSC)
App.Fig.6 Glass transition temperature curves of different epoxides (DSC)
参考文献
[1] Ma Songqi, Webster D C, Jabeen F. Hard and flexible, degradable thermosets from renewable bioresources with the assistance of water and ethanol[J]. Macromolecules, 2016, 49(10): 3780-3788.
[2] 蒋起航, 王威望, 钟禹, 等. 环氧树脂高频松弛的交流电导与双极性方波击穿特性[J]. 电工技术学报, 2024, 39(4): 1159-1171. Jiang Qihang, Wang Weiwang, Zhong Yu, et al. AC conductivity with high frequency relaxation and breakdown characteristics of epoxy resin under bipolar square wave voltage[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1159-1171.
[3] Xing Mingfei, Li Zixin, Zheng Guohang, et al. Recycling of carbon fiber-reinforced epoxy resin composite via a novel acetic acid swelling technology [J]. Composites Part B: Engineering, 2021, 224: 109230.
[4] 李进, 薛润东, 赵仁勇, 等. 基于声弹效应的芳纶增强环氧复合材料残余应力检测技术研究[J]. 电工技术学报, 2023, 38(9): 2519-2527. Li Jin, Xue Rundong, Zhao Renyong, et al. Residual stress detection technology for aramid reinforced epoxy composites based on acoustic-elastic effect[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2519-2527.
[5] 谢子豪, 李敏, 宋岩泽, 等. 温度对环氧树脂气—固界面电荷积聚的影响研究[J]. 高压电器, 2023, 59(9): 60-66, 89. Xie Zihao, Li Min, Song Yanze, et al. Study on effect of temperature on charge accumulation at gas-solid interface of epoxy resin[J]. High Voltage Apparatus, 2023, 59(9): 60-66, 89.
[6] Liu Jingkai, Wang Shuaipeng, Peng Yunyan, et al. Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability[J]. Progress in Polymer Science, 2021, 113: 101353.
[7] Chauhan S, Bhushan R K. Improvement in mechanical performance due to hybridization of carbon fiber/ epoxy composite with carbon black[J]. Advanced Composites and Hybrid Materials, 2018, 1(3): 602-611.
[8] Zhong Xiao, Yang Xutong, Ruan Kunpeng, et al. Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy[J]. Macromolecular Rapid Communica-tions, 2022, 43(1): e2100580.
[9] Fernando S, Adhikari S, Chandrapal C, et al. Biorefineries: current status, challenges, and future direction[J]. Energy & Fuels, 2006, 20(4): 1727-1737.
[10] Liu Xiaoqing, Xin Wenbo, Zhang Jinwen. Rosin-based acid anhydrides as alternatives to petrochemical curing agents[J]. Green Chemistry, 2009, 11(7): 1018-1025.
[11] Nikafshar S, Zabihi O, Hamidi S, et al. A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA[J]. RSC Advances, 2017, 7(14): 8694-8701.
[12] Dinu R, Lafont U, Damiano O, et al. High glass transition materials from sustainable epoxy resins with potential applications in the aerospace and space sectors[J]. ACS Applied Polymer Materials, 2022, 4(5): 3636-3646.
[13] 刘贺晨, 郭展鹏, 刘云鹏, 等. 衣康酸基环氧树脂与双酚A环氧树脂的电树枝特性对比[J]. 高电压技术, 2022, 48(7): 2607-2615. Liu Hechen, Guo Zhanpeng, Liu Yunpeng, et al. Comparison of electrical tree characteristics between itaconic acid based epoxy resin and bisphenol A epoxy resin[J]. High Voltage Engineering, 2022, 48(7): 2607-2615.
[14] Di Mauro C, Genua A, Mija A. Fully bio-based reprocessable thermosetting resins based on epoxidized vegetable oils cured with itaconic acid[J]. Industrial Crops and Products, 2022, 185: 115116.
[15] Xu Yunsheng, Hua Geng, Hakkarainen M, et al. Isosorbide as core component for tailoring biobased unsaturated polyester thermosets for a wide structure-property window[J]. Biomacromolecules, 2018, 19(7): 3077-3085.
[16] Li Chao, Liu Xiaoqing, Zhu Jin, et al. Synthesis, characterization of a rosin-based epoxy monomer and its comparison with a petroleum-based counterpart[J]. Journal of Macromolecular Science, Part A, 2013, 50(3): 321-329.
[17] Niu Haoxin, Wu Guanlong, Wang Xin, et al. Synthesis of a vanillin-derived bisDOPO co-curing agent rendering epoxy thermosets simultaneously improved flame retardancy, mechanical strength and transparency [J]. Polymer Degradation and Stability, 2023, 211: 110333.
[18] Ma Songqi, Liu Xiaoqing, Jiang Yanhua, et al. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers[J]. Green Chem, 2013, 15(1): 245-254.
[19] Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968.
[20] Li Wenbin, Xiao Laihui, Wang Yigang, et al. Thermal-induced self-healing bio-based vitrimers: Shape memory, recyclability, degradation, and intrinsic flame retardancy[J]. Polymer Degradation and Stability, 2022, 202: 110039.
[21] 刘贺晨, 孙章林, 刘云鹏, 等. 基于酯交换的可回收类玻璃化环氧树脂制备与性能研究[J]. 电工技术学报, 2023, 38(15): 4019-4029. Liu Hechen, Sun Zhanglin, Liu Yunpeng, et al. Preparation and properties of recyclable vitrified epoxy resin based on transesterification[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4019-4029.
[22] 刘贺晨, 孙章林, 魏利伟, 等. 双重动态交联Vitrimer树脂中电树枝劣化及局部放电与降解回收特性[J]. 中国电机工程学报, 2024, 44(19): 7852-7863. Liu Hechen, Sun Zhanglin, Wei Liwei, et al. Characterization of electrical dendrite degradation and partial discharge and degradation recovery in dual dynamic crosslinked vitrimer resin[J]. Proceedings of the CSEE, 2024, 44(19): 7852-7863..
[23] 伍云健, 丁大霖, 林慧, 等. 基于动态双硫键的本征自修复环氧绝缘材料性能研究[J]. 电工技术学报, 2024, 39(3): 836-843. Wu Yunjian, Ding Dalin, Lin Hui, et al. Properties of intrinsic self-healing epoxy insulating materials based on dynamic disulfide bond[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 836-843.
[24] Guo Zijian, Liu Bangjie, Zhou Li, et al. Preparation of environmentally friendly bio-based vitrimers from vanillin derivatives by introducing two types of dynamic covalent CN and S–S bonds[J]. Polymer, 2020, 197: 122483.
[25] Rashid M A, Zhu Siyao, Zhang Liying, et al. High-performance and fully recyclable epoxy resins cured by imine-containing hardeners derived from vanillin and syringaldehyde[J]. European Polymer Journal, 2023, 187: 111878.
[26] Matsukizono H, Endo T. Reworkable polyhydroxyur-ethane films with reversible acetal networks obtained from multifunctional six-membered cyclic carbonates [J]. Journal of the American Chemical Society, 2018, 140(3): 884-887.
[27] Li Qiong, Ma Songqi, Wang Sheng, et al. Facile catalyst-free synthesis, exchanging, and hydrolysis of an acetal motif for dynamic covalent networks[J]. Journal of Materials Chemistry A, 2019, 7(30): 18039-18049.
[28] Jung S, Kim Y S, Jang H G, et al. Thermally responsive imidazole-based diels-alder microbeads as a latent curing agent for epoxy resins[J]. ACS Applied Polymer Materials, 2022, 4(8): 6111-6119.
[29] Zhang Xiaoting, Wang Shujuan, Jiang Zikang, et al. Boronic ester based Vitrimers with enhanced stability via internal boron-nitrogen coordination[J]. Journal of the American Chemical Society, 2020, 142(52): 21852-21860.
[30] Lü Zhenyu, Wu Tongfei. Extremely stretchable vitrimers[J]. Macromolecular Rapid Communications, 2020, 41(16): e2000265.
[31] Li Pengyun, Ma Songqi, Wang Binbo, et al. Degradable benzyl cyclic acetal epoxy monomers with low viscosity: synthesis, structure-property relation-ships, application in recyclable carbon fiber composite [J]. Composites Science and Technology, 2022, 219: 109243.
[32] Baumgarten K, Tighe B P. Viscous forces and bulk viscoelasticity near jamming[J]. Soft Matter, 2017, 13(45): 8368-8378.
[33] 刘贺晨, 魏利伟, 孙章林, 等. 催化剂对基于动态酯交换Vitrimers材料性能的影响[J]. 电工技术学报, 2024, 39(16): 5134-5148. Liu Hechen, Wei Liwei, Sun Zhanglin, et al. Influence of catalysts on the properties of dynamic ester exchange Vitrimers based materials[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5134-5148.
[34] Liu Tuan, Hao Cheng, Zhang Shuai, et al. A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry[J]. Macro-molecules, 2018, 51(15): 5577-5585.
[35] Di Mauro C, Mija A. Influence of the presence of disulphide bonds in aromatic or aliphatic dicarboxylic acid hardeners used to produce reprocessable epoxidized thermosets[J]. Polymers, 2021, 13(4): 534.
[36] Di Mauro C, Genua A, Mija A. Building thermally and chemically reversible covalent bonds in vegetable oil based epoxy thermosets. Influence of epoxy-hardener ratio in promoting recyclability[J]. Materials Advances, 2020, 1(6): 1788-1798.
[37] Sun Wenjie, Zhang Lei, Xu Jiazhu, et al. Study on vanillin triggered degradable epoxy via facile one-pot synthesis[J]. Materials Letters, 2022, 323: 132589.
[38] Geng Hongwei, Wang Yuli, Yu Qingqing, et al. Vanillin-based polyschiff vitrimers: reprocessability and chemical recyclability[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15463-15470.
[39] Liu Xiaohong, Liang Liyan, Lu Maoping, et al. Water-resistant bio-based vitrimers based on dynamic imine bonds: self-healability, remodelability and ecofriendly recyclability[J]. Polymer, 2020, 210: 123030.
[40] Ma Jinpeng, Li Guanxi, Hua Xueni, et al. Biodegradable epoxy resin from vanillin with excellent flame-retardant and outstanding mechanical properties[J]. Polymer Degradation and Stability, 2022, 201: 109989.
[41] Chen Picheng, Ding Yu, Wang Yanqing, et al. Functional bio-based vitrimer with excellent healing and recyclability based on conjugated deflection self-toughening[J]. Chemical Engineering Journal, 2023, 474: 145680.
[42] Nabipour H, Niu Haoxin, Wang Xin, et al. Fully bio-based epoxy resin derived from vanillin with flame retardancy and degradability[J]. Reactive and Functional Polymers, 2021, 168: 105034.
[43] Xu Xiwei, Ma Songqi, Wu Jiahui, et al. High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties[J]. Journal of Materials Chemistry A, 2019, 7(25): 15420-15431.
[44] Málek J. Kinetic analysis of crystallization processes in amorphous materials[J]. Thermochimica Acta, 2000, 355(1/2): 239-253.
[45] Taynton P, Ni Huagang, Zhu Chengpu, et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks [J]. Advanced Materials, 2016, 28(15): 2904-2909.
[46] Xu Xiwei, Ma Songqi, Wang Sheng, et al. Dihydrazone-based dynamic covalent epoxy networks with high creep resistance, controlled degradability, and intrinsic antibacterial properties from bioresources [J]. Journal of Materials Chemistry A, 2020, 8(22): 11261-11274.
[47] 史中行. 交联结构对聚氨酯弹性体性能的影响[D]. 青岛: 青岛科技大学, 2022. Shi Zhongxing. Effect of cross-linking structure on properties of polyurethane elastomer[D]. Qingdao: Qingdao University of Science and Technology, 2022.
[48] Liu Jingkai, Dai Jinyue, Wang Shuaipeng, et al. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin[J]. Composites Part B: Engineering, 2020, 190: 107926.
[49] Wang Sheng, Ma Songqi, Li Qiong, et al. Facile in-situ preparation of high-performance epoxy vitrimers from renewable resources and its application in nondestructively recyclable carbon fiber composites [J]. Green Chemistry, 2019, 21(6): 1484-1497.
[50] Fang Zhen, Nikafshar S, Hegg E L, et al. Biobased divanillin as a precursor for formulating biobased epoxy resin[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9095-9103.
[51] Desnoes E, Toubal L, Bouazza A H, et al. Biosourced vanillin Schiff base platform monomers as substitutes for DGEBA in thermoset epoxy[J]. Polymer Engineering & Science, 2020, 60(10): 2593-2605.
[52] Yang Aihua, Deng Cong, Chen Hong, et al. A novel Schiff-base polyphosphate ester: highly-efficient flame retardant for polyurethane elastomer[J]. Polymer Degradation and Stability, 2017, 144: 70-82.
[53] Gnanasekar P, Chen Heyu, Tratnik N, et al. Enhancing performance of phosphorus containing vanillin-based epoxy resins by P–N non-covalently functionalized graphene oxide nanofillers[J]. Composites Part B: Engineering, 2021, 207: 108585.
[54] Krause B, Koops G H, van der Vegt N F A, et al. Ultralow-k dielectrics made by supercritical foaming of thin polymer films[J]. Advanced Materials, 2002, 14(15): 1041.
[55] 孙煜. 低介电常数聚酰亚胺薄膜材料的制备及性能研究[D]. 郑州: 郑州轻工业大学, 2022. Sun Yu. Preparation and properties of polyimide film with low dielectric constant[D]. Zhengzhou: Zhengzhou University of Light Industry, 2022.
[56] Utpalla P, Sharma S K, Deshpande S K, et al. Role of free volumes and segmental dynamics on ion conductivity of PEO/LiTFSI solid polymer electrolytes filled with SiO2 nanoparticles: a positron annihilation and broadband dielectric spectroscopy study[J]. Physical Chemistry Chemical Physics, 2021, 23(14): 8585-8597.
[57] Bakar R, Darvishi S, Aydemir U, et al. Decoding polymer architecture effect on ion clustering, chain dynamics, and ionic conductivity in polymer electrolytes[J]. ACS Applied Energy Materials, 2023, 6(7): 4053-4064.
[58] Liu Xiaohong, Zhang Ending, Feng Zhiqiang, et al. Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites[J]. Journal of Materials Science, 2021, 56(28): 15733-15751.
[59] Ma Songqi, Webster D C. Degradable thermosets based on labile bonds or linkages: a review[J]. Progress in Polymer Science, 2018, 76: 65-110.
[60] Tran T N, Di Mauro C, Malburet S, et al. Dual cross-linking of epoxidized linseed oil with combined aliphatic/aromatic diacids containing dynamic S-S bonds generating recyclable thermosets[J]. ACS Applied Bio Materials, 2020, 3(11): 7550-7561.
[61] Di Mauro C, Genua A, Mija A. Kinetical study, thermo-mechanical characteristics and recyclability of epoxidized camelina oil cured with antagonist structure (aliphatic/aromatic) or functionality (acid/ amine) hardeners[J]. Polymers, 2021, 13(15): 2503.
[62] Memon H, Liu Haiyang, Rashid M A, et al. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability[J]. Macromolecules, 2020, 53(2): 621-630.
[63] Wang Sheng, Ma Songqi, Li Qiong, et al. Robust, fire-safe, monomer-recovery, highly malleable thermosets from renewable bioresources[J]. Macromolecules, 2018, 51(20): 8001-8012.
Abstract Bisphenol A-type epoxy resins are widely used in epoxy-insulated electrical equipment and other fields due to their excellent comprehensive performance, but due to the formation of permanent three-dimensional cross-linking network after curing of epoxy resins, a large number of electrical equipment can not be efficiently degraded and recycled after decommissioning, which results in a serious waste of resources. In this paper, vanillin is used as the raw material to prepare bio-based epoxy resin, and at the same time, dynamic imine bonding is introduced to prepare degradable vanillin-based glassy epoxy resin (EDV), and the traditional bisphenol A-based epoxy resin (DGEBA) and vanillin-based epoxy resin are blended with different ratios, and the high-performance, degradable and recycled epoxy resin copolymers are prepared, and the curing process is analyzed in detail, and the experiments are analyzed The basic service characteristics of the resin under different blending ratios in terms of electrical, thermal and mechanical properties, and its degradation and recycling properties were explored.
Firstly, in order to prepare vanillin-based epoxy resins based on imine bonding, vanillin and p-aminophenol were chosen as raw materials, and the syntheses were epoxidized and blended with conventional bisphenol A-type epoxy resins at different ratios, and MHHPA and EMIP were chosen as the curing agent and promoter, respectively, and were prepared in accordance with the curing mode of the probe, and at the same time, conventional bisphenol A-type epoxy resins were set up as the control group. Then, Fourier infrared spectroscopy tests were carried out and the results showed that the epoxy resin was correctly synthesized and fully cured. Finally, the data of different systems of epoxy resins were comparatively analyzed by thermogravimetric analysis, dynamic thermodynamic analysis, tensile bending test, comprehensive analysis of electrical properties, degradation recycling and self-repairing test to assess their applicability in the field of electrical engineering.
The following conclusions can be drawn from the experimental analysis: (1) The Van-0.25 system has the best heat resistance, mechanical properties, and electrical properties, but exhibits poor degradation recycling performance and low self-healing efficiency due to the low content of imine bonding, and the Van-1 all-bio-based resin has a less comprehensive performance than traditional epoxy resins, but meets the in-service requirements of electrical materials, and exhibits a better self-healing. (2) With the increase of EDV content, the curing rate of the resin system is accelerated, and the samples are fully cured and crosslinked, showing excellent solvent resistance, as verified by infrared spectroscopy and gelation rate tests. It was demonstrated that the glass transition temperature, mechanical strength of the polymers were related to the cross-linking density and the rigidity of the chain segment structure, in which Van-0.25 had the highest glass transition temperature and mechanical strength, and also showed excellent thermal stability, and the introduction of the bio-based resins played a certain flame-retardant effect on the epoxy resin. The electrical properties decrease with the increase of imine bond content, and the dielectric properties are excellent, showing certain water resistance. (3) The Vitrimer system constructed in the paper can be degraded and recycled and thermo-pressurized recycled due to the dynamic exchange of imine bonds at high temperatures, in which the chemical recycling effect is good, and the breakdown strength is maintained within a certain strength. In addition, the Vitrimer system also showed good self-healing performance, and all the specimens were repaired within 180 min.
keywords:Vitrimer, epoxy resin,vanillin, imine bond, degradation and recovery
国家自然科学基金(52377025)和中央高校基本科研业务费专项资金(20226934)资助项目。
收稿日期 2024-04-10
改稿日期 2024-05-28
DOI: 10.19595/j.cnki.1000-6753.tces.240564
中图分类号:TM215
刘云鹏 男,1976年生,博士,教授,博士生导师,研究方向为特高压输电技术、电气设备在线检测和外绝缘。E-mail:liuyunpeng@ncepu.edu.cn
刘贺晨 男,1989年生,副教授,博士生导师,研究方向为环保型环氧树脂及其复合材料研制、电气设备绝缘状态评估及聚合物电树枝特性等。E-mail:hc.liu@ncepu.edu.cn(通信作者)
(编辑 李 冰)