基于多智能体系统的多永磁同步电机固定时间优化转速一致性控制

侯利民 李政龙 赵世杰 兰骁儒

(辽宁工程技术大学电气与控制工程学院 葫芦岛 125105)

摘要 针对多永磁同步电机高性能转速协同控制问题,该文提出了一种基于多智能体系统的固定时间优化转速一致性控制方法。首先,根据永磁同步电机的数学模型,为每个电机设计了一个固定时间分布式状态观测器来估计虚拟领导者的状态,以确保每台电机都能准确获得局部目标函数的梯度信息。其次,设计了一个固定时间一致性协议,在协议中引入局部梯度信息,使得多个电机的速度在固定时间内实现一致并收敛至最优轨迹,同时设计了一个固定时间扩张状态观测器来估计系统的未知扰动,从而提高系统的抗干扰能力。最后,通过三电机转速控制实验平台验证了该文所提控制方法的可行性和有效性。

关键词:多永磁同步电机 多智能体一致性 固定时间优化 转速协同控制

0 引言

永磁同步电机因其独特的物理特性被广泛应用于多个工程领域,如数控机床、航空航天、轨道列车等[1-7]。随着新能源技术和人工智能的快速发展,网络化多永磁同步电机协同控制已成为当下研究的热点,其中多个电机之间的同步性能和抗干扰能力是研究的关键问题[8-9]。传统的多永磁同步电机协同控制主要包括主从控制、交叉耦合控制、偏差耦合控制等[10-12]

在主从控制中,只有主电机跟随参考速度,而从电机只能跟踪主电机的速度,导致从电机的速度总是滞后于主电机的速度,且从电机的状态不能反馈给主电机,在受到外部扰动时,整个系统的同步性能较差。为了改善这一问题,学者们提出一种交叉耦合控制,通过设计一种交叉耦合控制器使两台电机的状态达到同步,但该方法只适用于两台电机间的协同控制,不适用于更多数量的电机系统。因此,在交叉耦合控制的基础上提出了偏差耦合的概念,根据相邻电机之间的信息设计一个同步误差补偿器,从而提高整体的同步性能。但补偿器需要计算所有电机的速度信息,当电机数量较多时,补偿器的结构非常复杂。在很多应用场景中,如无人机编队、机器人编队等大规模群体控制系统中,无法保证每台电机都能获得所有电机的速度信息,因此迫切需要提出一种新的分布式控制方法解决此类 问题。

近年来,多智能体一致性理论倍受关注,广泛应用于电力系统、智能交通、车辆编队等领域[13-15]。这是一种分布式的控制方法,将每个单独的智能体视为一个节点,将智能体之间的信息交互视为一条边,利用图论的知识来描述多智能体系统之间的信息传输关系,通过系统的局部信息设计适当的一致性协议,使多个智能体的状态达到一致。为了最终能够准确跟踪上期望轨迹,通常定义其中一个智能体为领导者或者虚拟领导者,其余所有智能体为跟随者,在一致性协议的作用下,所有跟随者的状态能够达到一致并跟踪上领导者的状态,最终实现多智能体系统的领导-跟随一致性控制[16-17]

目前,关于多智能体一致性理论已经存在大量的研究成果,现有的大部分协议都可被证明是渐近稳定或是有限时间稳定,而在实际应用中,通常期望系统可以在固定时间内达到稳定。文献[18]针对带有延迟扰动的多智能体系统,提出了一种在非周期间歇控制下的固定时间一致性协议,不需要获得系统的初始条件。文献[19]考虑了基于不同通信拓扑的无领导者和领导-跟随一致性两种情况,通过设计一种增益自适应的固定时间一致性协议,使系统输入更平稳,鲁棒性更强。当多智能体系统的状态达到一致且能够同时最小化一个目标函数时,多智能体一致性问题就变成了一个分布式优化问题。文献[20]讨论了一种规定时间分布式优化问题,设计了一种固定时间观测器,通过局部梯度信息来估计全局梯度信息,并根据全局梯度信息设计一种规定时间一致性协议,但该方法需要向每个智能体发送期望轨迹的信息,并未做到完全的分布式控制。

受上述研究内容启发,本文将多智能体一致性理论应用于多永磁同步电机协同控制系统中,将该系统视为一个多智能体系统,通过设计一种固定时间优化转速一致性协议来代替传统的多永磁同步电机协同控制系统中的速度环控制器,由一致性协议直接得到期望的q轴电流。设计一种固定时间分布式状态观测器用于估计领导者的状态,每台电机仅通过局部信息就可在固定时间内实现转速一致,并准确跟踪上期望值,从而实现多永磁同步电机协同控制。设计了一个固定时间扰动观测器来提高电机在负载变化等外部扰动影响下的鲁棒性。

1 系统模型和预备知识

1.1 多永磁同步电机的数学模型

对于多永磁同步电机转速协同控制系统,将每个永磁同步电机调速系统视为一个独立的智能体,通过网络通信实现相邻电机的信号传输,由多个电机构成的多永磁同步电机转速协同控制系统视为一个多智能体系统。对于有N+1个电机的多电机转速协同控制系统,将虚拟电机0视为一个虚拟领导者,实体电机ii=1, 2,…, N)视为跟随者。本文以表贴式永磁同步电机为例,第i个永磁同步电机在dq轴坐标系中的数学模型为

width=122.25,height=27.85 (1)

式中,i为永磁同步电机序号,i=1, 2,…, Nwidth=14.25,height=17为q轴电流;width=10.85,height=14.95为永磁体磁链;width=8.85,height=10.2为极对数;width=12.25,height=14.95为摩擦系数;width=12.25,height=14.95为转动惯量;width=17,height=16.3为负载转矩;width=12.25,height=14.95为实际机械角速度。

根据永磁同步电机的机械运动方程,将永磁同步电机视为一阶系统,建立速度环超局部模型为

width=61.8,height=27.85 (2)

其中

width=42.1,height=29.9 width=72,height=31.25

式中,width=10.2,height=14.95为实体永磁同步电机的控制系数;width=10.85,height=14.95为控制输入,即固定时间优化一致性协议;width=10.85,height=14.95为系统的综合扰动。

将多永磁同步电机速度协同控制系统视为一个一阶多智能体系统,式(2)被改写为

width=53,height=14.95 (3)

式中,width=10.85,height=14.95为第width=6.8,height=12.25个永磁同步电机的角速度,即width=12.25,height=14.95。对于虚拟领导者,不考虑负载转矩和摩擦转矩的影响,因此虚拟领导者的数学模型可以被建立为

width=38.7,height=14.95 (4)

式中,width=12.25,height=14.95为虚拟领导者的角速度,即width=14.25,height=14.95width=12.25,height=14.95为虚拟领导者的控制输入,且有width=38.7,height=17,其中,width=8.85,height=10.2为一个较小的正实数。为虚拟领导者设计一个PI控制器,使虚拟领导者的速度能够快速、准确地跟踪目标转速width=14.25,height=14.95,设计PI控制器为

width=146.7,height=21.05 (5)

式中,width=12.25,height=17为比例增益;width=10.85,height=14.95为积分增益。定义第width=6.8,height=12.25个智能体的局部代价函数为width=12.9,height=14.95,全局代价函数为width=19,height=12.25 width=27.15,height=33.3,令width=12.25,height=14.95为如下凸优化问题的最优解,则有

width=86.25,height=50.95 (6)

其中

width=61.8,height=23.75

式中,通过为系统式(3)设计一个固定时间优化一致性协议,使得所有智能体的状态在固定时间内趋于一致并收敛至最优轨迹width=12.25,height=14.95

1.2 预备知识

在多智能体系统中,定义width=46.2,height=14.95是一个以width=17,height=14.25 width=59.75,height=17作为点集,并且以width=42.1,height=14.95作为边集的无向图。width=38.7,height=14.95代表智能体width=6.8,height=12.25和智能体width=8.85,height=14.25能够彼此进行信息交互。定义邻接矩阵width=74.05,height=19,用于表示多个智能体之间的通信关系。并且对于width=23.1,height=12.25width=29.2,height=14.95。当width=10.85,height=12.25是一个无向图时,矩阵width=10.85,height=10.85是对称的。定义度矩阵为width=112.1,height=17,其中width=48.25,height=35.3width=54.35,height=12.9。定义拉普拉斯矩阵为width=38.05,height=19,其中width=36.7,height=17width=44.85,height=35.3width=21.75,height=14.25width=23.1,height=14.25 width=40.75,height=12.9。根据这个定义,可以得到width=44.85,height=10.85width=42.8,height=14.95width=36,height=17,其中width=10.85,height=14.95为虚拟领导者与跟随者之间的通信权重,且有width=44.15,height=14.25。如果在任意不同点之间都存在一条路径,那么图width=10.85,height=12.25是连通的。

2 固定时间分布式状态观测器的设计

为了使每个电机仅通过局部信息就能获取虚拟领导者的状态,设计一种固定时间分布式状态观测器为

width=230.95,height=76.75(7)

其中

width=84.25,height=36.7

式中,width=10.2,height=14.95为第width=6.8,height=12.25个智能体的分布式状态观测器对虚拟领导者的估计值;width=12.9,height=14.95width=14.25,height=14.95width=12.9,height=14.95width=12.9,height=14.95width=6.8,height=12.9为观测器的增益;width=27.85,height=14.95width=44.85,height=14.95,其中,width=12.9,height=14.95width=14.25,height=14.95为观测器的幂次项。

实际上,当虚拟领导者与第width=6.8,height=12.25个电机或多个电机可以进行信息交互时,该电机可直接获得虚拟领导者的状态,即width=31.9,height=17,其余不能接收领导者信息的电机需要通过式(7)获得虚拟领导者的状态。

通过李雅普诺夫函数分析该观测器的稳定性,令width=46.2,height=14.95,可将式(7)改写为

width=230.95,height=76.75(8)

建立李雅普诺夫函数width=10.85,height=12.25

width=50.25,height=27.15 (9)

由于width=10.85,height=12.25为正定实对称矩阵,对width=10.85,height=12.25求导可得

width=226.2,height=118.2(10)

width=23.1,height=14.95时,上述不等式(10)可进一步改写为

width=182.05,height=102.55(11)

对式(11)的项进一步放缩,则有

width=144.7,height=40.1 (12)

式中,width=35.3,height=14.95width=10.85,height=12.25的最小特征值。

将式(12)代入式(11)中进一步可得

width=222.1,height=27.15

width=89,height=23.75 (13)

其中,令

width=131.75,height=27.15

width=110.05,height=23.75

此时,由文献[21]中的引理可知,该观测器可以在固定时间内达到稳定,且收敛时间width=14.25,height=14.95

width=114.8,height=31.25 (14)

3 固定时间优化转速一致性协议的设计

本文针对多永磁同步电机协同控制系统提出了一种固定时间优化转速一致性控制方法。根据多个永磁同步电机之间的信息交互关系,设计一个固定时间优化转速一致性协议来代替多电机协同控制中的速度环控制器,确保系统式(3)中的状态变量width=10.85,height=14.95可以在固定时间内趋于一致,并准确跟踪上虚拟领导者的状态width=14.25,height=12.9。本文所提出的多永磁同步电机固定时间优化转速协同控制方法原理框图如图1所示。

width=487,height=235

图1 多永磁同步电机固定时间优化转速协同控制原理框图

Fig.1 Block diagram of fixed-time optimized collaborative control principle for multi permanent magnet synchronous motor

width=48.9,height=14.95 (15)

width=233,height=74.05(16)

width=228.25,height=148.75

width=95.1,height=38.7 (17)

式中,width=10.85,height=10.2width=10.85,height=14.25width=8.85,height=12.9width=8.85,height=12.25width=10.85,height=12.25为一致性协议的增益;width=12.25,height=14.95width=14.25,height=14.95为次幂项,且满足width=27.15,height=14.95width=44.85,height=14.95width=19.7,height=16.3为第width=6.8,height=12.25个电机的邻居梯度信息的平均值,即width=72,height=35.3width=10.85,height=17为综合扰动的估计值;width=14.95,height=14.95为Hessian矩阵。定义width=89,height=19.7width=27.85,height=12.25

定理1:永磁同步电机一阶多智能体系统式(3)在一致性协议式(15)的作用下,当满足width=29.9,height=17时,可以实现固定时间优化转速一致性。

证明:建立李雅普诺夫函数为

width=110.05,height=35.3 (18)

并进行如下定义

width=84.25,height=35.3 (19)

width=199.7,height=33.3(20)

width=10.85,height=14.95求导可得

width=184.75,height=74.7

width=120.9,height=25.15 (21)

此时认为width=29.9,height=17,可得

width=152.85,height=42.8 (22)

width=91,height=21.05 (23)

由上述不等式进一步可得

width=205.15,height=42.1(24)

其中

width=179.3,height=33.3 (25)

式中,width=12.9,height=14.95width=10.2,height=10.85的第二小特征值。

将式(25)代入式(24)可得

width=215.3,height=27.15

width=88.3,height=25.8 (26)

其中

width=112.75,height=27.15

width=82.85,height=23.75

由式(26)可知,系统式(3)可以在固定时间内收敛到原点,且收敛时间为

width=108,height=31.25 (27)

系统式(3)是在式(16)的作用下实现一致的,但由于式(16)中并未包含领导者的状态,因此系统式(3)只是在固定时间width=10.85,height=14.95内收敛到同一状态,即width=19.7,height=14.95 width=12.25,height=17,却未能准确跟踪上领导者的状态,且有width=29.2,height=16.3 width=127.7,height=35.3

此时,优化一致性协议可改写为

width=207.15,height=88.3(28)

此时,建立新的李雅普诺夫函数为

width=120.25,height=40.1 (29)

width=12.25,height=14.95求导可得

width=226.2,height=120.9

width=90.35,height=25.8 (30)

其中

width=84.9,height=25.8

width=90.35,height=25.8

根据式(30)可知,width=12.25,height=14.95在固定时间width=12.25,height=14.95内收敛至0,此时width=50.25,height=33.3,收敛时间width=12.25,height=14.95

width=110.7,height=31.25 (31)

由于系统式(3)中的综合扰动width=10.85,height=14.95是未知的,且所设计的优化一致性协议式(15)中包含了综合扰动的估计值,即width=10.85,height=17,因此,设计一个固定时间扩张状态观测器来估计电机的综合扰动。根据系统式(3),设计的扩张状态观测器为

width=188.15,height=61.15(32)

式中,width=14.95,height=16.3width=12.25,height=14.95的观测值;width=16.3,height=16.3为综合扰动的观测值,即width=10.85,height=17width=12.25,height=14.95width=14.25,height=14.95为观测器增益,且满足width=12.25,height=14.95, width=29.9,height=14.95width=12.9,height=14.95width=13.6,height=14.95为固定时间扩张状态观测器的幂次项,width=44.85,height=14.95width=27.85,height=14.95

4 实验验证

为了验证本文所提控制方法的可行性和有效性,与偏差耦合控制方法在实验平台上进行对比实验。实验平台如图2所示,所选择的电机参数见 表1,本文所设计的控制方法的参数见表2,偏差耦合控制方法的参数见表3。

width=156.25,height=144.7

图2 多电机调速与加载综合实验平台

Fig.2 Multi-motor speed control and load integration experimental platform

表1 永磁同步电机参数

Tab.1 The parameters of permanent magnet synchronous motor

参 数数 值 定子电阻Rs/W0.5 dq轴电感L/H0.01 摩擦因数B/(N·m·s)0.004 3 转动惯量J/(kg·m2)0.001 94 磁链yf/Wb0.1 极对数n2 额定功率P/W1 500

表2 本文所提控制方法的参数

Tab.2 The parameters of the control scheme proposed in this paper

参 数数 值 200 200 55 55 k0.8 2 0.5

表3 偏差耦合控制方法的参数

Tab.3 The parameters of relative coupling control method

参 数数 值 kps0.3 kis2 kpc6 kic8

4.1 正反转实验

给定电机转速为400 r/min,在30 s时给定电机转速为-400 r/min。图3所示为电机正反转速度响应曲线,图中,PMSM0为虚拟领导者的转速,PMSM1、PMSM2、PMSM3分别为第一、第二、第三台电机的转速。图4为本文所提的分布式状态观测器估计得到的虚拟领导者的转速,图5为观测器的观测误差。根据图4所示,所提出的分布式状态观测器可以准确地估计出虚拟领导者的状态。图6和图7所示为电机正反转时的代价函数响应曲线,在一致性协议的作用下,系统的局部代价函数和全局代价函数迅速收敛至0。

width=232.3,height=103.9

图3 正反转速度响应曲线

Fig.3 Response curves of forward and reverse speeds

width=232.3,height=103.9

图4 虚拟领导者的估计值

Fig.4 Estimated value of virtual leader

width=232.3,height=106.65

图5 分布式状态观测器的估计误差

Fig.5 Estimation error of distributed state observer

width=224.15,height=105.95

图6 正反转时局部代价函数响应曲线

Fig.6 Local cost function response curves during forward and reverse rotation

width=224.15,height=112.1

图7 正反转时全局代价函数响应曲线

Fig.7 Global cost function response curves during forward and reverse rotation

4.2 升降速对比实验

给定电机转速为400 r/min,在30 s时将电机速度升至600 r/min,在55 s时电机转速降至400 r/min,两种控制方法下的速度响应曲线如图8所示。本文所提方法在起动过程中和速度变化时没有出现超调,在稳态时仅有0.5 r/min的转速波动,而偏差耦合方法出现8 r/min左右的超调,在稳态时的抖振为2 r/min。图9和图10分别为电机在升降速时的跟踪误差响应和同步误差响应曲线,可以看出,在电机稳定运行时,本文所提方法具有更小的跟踪 误差和同步误差,分别为1 r/min和1.5 r/min,偏差耦合方法的跟踪误差与同步误差分别为1.7 r/min和2.2 r/min。

width=232.3,height=250.65

图8 升降速速度响应曲线

Fig.8 Speed response curves during acceleration and deceleration

width=232.3,height=254.05

图9 升降速时跟踪误差响应曲线

Fig.9 Tracking error response curves during acceleration and deceleration

width=232.3,height=254.7

图10 升降速时同步误差响应曲线

Fig.10 Response curves of synchronization error during acceleration and deceleration

4.3 同时刻负载变化对比实验

给定电机转速为400 r/min,在10 s时分别给定三台电机的负载为3、2、1 N·m,并在30 s时卸去所有负载。图11为两种控制方法下的速度响应曲线,图12和图13分别为负载变化时的跟踪误差响应和同步误差响应曲线。当电机负载发生阶跃变化时,本文所提控制方法产生20 r/min的转速波动,偏差耦合控制产生的波动为80.3 r/min,调整后都能稳定运行。电机在负载运行过程中,本文所提控制方法产生了6.2 r/min的转速波动,相比于偏差耦合控制减小11.4%。图14为两种控制方法下q轴期望电流的响应曲线,本文所提控制方案的电流波动为0.31 A,偏差耦合控制下的电流波动为0.99 A,调整后稳定运行时为所期望的直流电流。

width=232.3,height=248.6

图11 同时刻负载变化速度响应曲线

Fig.11 Speed response curves when load changes occur at the same time

4.4 不同时刻负载变化对比实验

给定电机转速为400 r/min,分别给定三台电机的负载为3、2、1 N·m,并分别在50、60、70 s时卸去所有电机的负载。图15为两种控制方法下的速度响应曲线,图16和图17分别为负载变化时的跟踪误差响应曲线和同步误差响应曲线。当不同电机的负载在不同时刻出现不同的变化时,本文所提控制方法在带载运行过程中产生的转速波动为5.2 r/min,在负载变化瞬间的转速波动为44.2 r/min,相比于偏差耦合控制减小23.5%和23.7%。图18为q轴期望电流变化曲线,本文所提控制方法电流波动为0.7 A,在偏差耦合控制下的电流波动为1.54 A,调整后稳定运行时为所期望的直流电流。

width=232.3,height=256.1

图12 同时刻负载变化跟踪误差响应曲线

Fig.12 Tracking error response curves when load changes occur at the same time

width=232.3,height=254.7

图13 同时刻负载变化同步误差响应曲线

Fig.13 Synchronous error response curves when load changes occur at the same time

width=231.6,height=249.95

图14 同时刻负载变化q轴期望电流响应曲线

Fig.14 q-axis desired current response curves when load changes occur at the same time

width=232.3,height=248.6

图15 不同时刻负载变化速度响应曲线

Fig.15 Speed response curves when load changes occur at different times

width=232.3,height=249.95

图16 不同时刻负载变化跟踪误差响应曲线

Fig.16 Tracking error response curves when load changes occur at different times

width=232.3,height=249.95

图17 不同时刻负载变化同步误差响应曲线

Fig.17 Synchronous error response curves when load changes occur at different times

5 结论

本文针对多永磁同步电机协同控制,提出了一种基于多智能体固定时间优化转速一致性的控制方法,取代了传统控制方法中的速度环控制器。设计了一个固定时间分布式状态观测器用于估计虚拟领导者的状态,利用固定时间扩张状态观测器观测系统的未知扰动,并补偿到一致性协议中,通过一致性协议在固定时间内直接得到q轴期望电流,并在协议中引入局部代价函数的梯度信息,使多个电机的速度在固定时间内收敛至最优轨迹。实验结果表明,本文所提控制方法相比于传统的偏差耦合控制具有更好的同步性能和抗干扰能力。

width=231.6,height=249.95

图18 不同时刻负载变化q轴期望电流响应曲线

Fig.18 q-axis desired current response curves when load changes occur at different times

参考文献

[1] 朱良红, 张国强, 李宇欣, 等. 基于级联扩张观测器的永磁电机无传感器自抗扰控制策略[J]. 电工技术学报, 2022, 37(18): 4614-4624.

Zhu Lianghong, Zhang Guoqiang, Li Yuxin, et al. Active disturbance rejection control for position sensorless permanent magnet synchronous motor drives based on cascade extended state observer[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4614-4624.

[2] 苗轶如, 宋鹏云, 吕铭晟, 等. 表贴式永磁同步电机预测转矩控制的无权重代价函数设计方法[J]. 电工技术学报, 2023, 38(12): 3141-3150.

Miao Yiru, Song Pengyun, Lü Mingsheng, et al. Design of cost function without weighting factor for predictive torque control of surface-mounted per- manent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3141- 3150.

[3] 赵凯辉, 刘文昌, 刘智诚, 等. 一种永磁同步电机无模型高阶滑模控制算法[J]. 电工技术学报, 2023, 38(6): 1472-1485.

Zhao Kaihui, Liu Wenchang, Liu Zhicheng, et al. Model-free high sliding mode control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1472-1485.

[4] 郭磊磊, 王朋帅, 李琰琰, 等. 不同代价函数下永磁同步电机模型预测控制参数失配可视化分析[J]. 电工技术学报, 2023, 38(4): 903-914.

Guo Leilei, Wang Pengshuai, Li Yanyan, et al. Visual analysis of parameters mismatch in model predictive control for permanent magnet synchronous motor under different cost functions[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 903-914.

[5] 杨明, 刘铠源, 陈扬洋, 等. 基于PI-Lead控制的永磁同步电机双环位置伺服系统[J]. 电工技术学报, 2023, 38(8): 2060-2072.

Yang Ming, Liu Kaiyuan, Chen Yangyang, et al. Permanent magnet synchronous motor dual-loop position servo system based on PI-Lead control[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2060-2072.

[6] 梅三冠, 卢闻州, 樊启高, 等. 基于滑模观测器误差补偿的永磁同步电机无位置传感器控制策略[J]. 电工技术学报, 2023, 38(2): 398-408.

Mei Sanguan, Lu Wenzhou, Fan Qigao, et al. Sensorless control strategy of permanent magnet synchronous motor based on error compensation estimated by sliding mode observer[J]. Transactions of China Electrotechnical Society, 2023, 38(2): 398-408.

[7] 东野亚兰, 杨淑英, 王奇帅, 等. 基于增强型扩张状态观测器的永磁同步电机低抖振高抗扰二阶终端滑模电流控制[J]. 电工技术学报, 2024, 39(8): 2434-2448.

Dongye Yalan, Yang Shuying, Wang Qishuai, et al. Enhanced extended state observer based second order terminal sliding mode current control for permanent magnet synchronous machine with low chattering and improved disturbance rejection[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2434- 2448.

[8] 赵剑飞, 花敏琪, 刘廷章. 电动车用多盘式永磁同步电机协同优化与容错控制方法[J]. 中国电机工程学报, 2019, 39(2): 386-394, 636.

Zhao Jianfei, Hua Minqi, Liu Tingzhang. Cooperative optimization and fault-tolerant control method of multi-disk permanent magnet synchronous motor for electric vehicles[J]. Proceedings of the CSEE, 2019, 39(2): 386-394, 636.

[9] Dai Yuchen, Zhang Liyan, Xu Dezhi, et al. Anti- disturbance cooperative fuzzy tracking control of multi-PMSMs low-speed urban rail traction systems[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 1040-1052.

[10] 李仕豪, 狄冲, 刘佶炜, 等. 考虑交叉耦合影响的内置式永磁同步电机电感计算及转矩分析[J]. 电工技术学报, 2023, 38(18): 4889-4899, 4931.

Li Shihao, Di Chong, Liu Jiwei, et al. Inductance calculation and torque analysis of interior permanent magnet synchronous machine considering cross- coupling effects[J]. Transactions of China Elec- trotechnical Society, 2023, 38(18): 4889-4899, 4931.

[11] Cheng Yuanhao, Wu Yinglong, Xiang Jiawei, et al. Improved relative coupling cooperative control for multi-motor driving system[C]//2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2022: 929-933.

[12] Zhang Hang, Liang Wenrui, Zhang Hui. Multi-PMSM sensorless cooperative control based on LADRC[C]// 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 2022: 1-6.

[13] Antonio V T J, Adrien G, Manuel A M, et al. Event- triggered leader-following formation control for multi-agent systems under communication faults: application to a fleet of unmanned aerial vehicles[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1014-1022.

[14] Zhang Xuejing, Zhang Yuping, Li Ranran. Distributed event-triggered control for power sharing in grid- connected AC microgrid[J]. IEEE Transactions on Power Systems, 2024, 39(1): 770-778.

[15] Zhao Guanglei, Cui Hailong, Hua Changchun. Hybrid event-triggered bipartite consensus control of multi- agent systems and application to satellite formation[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(3): 1760-1771.

[16] Sun Yuhao, Peng Shiguo. Consensus of discrete-time leader-following linear multi-agent systems under Lyapunov-function-based event-triggered mechanism[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(12): 4409-4413.

[17] Li Kuo, Hua Changchun, You Xiu, et al. Leader- following consensus control for uncertain feed- forward stochastic nonlinear multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 1049-1057.

[18] Liu Jun, Wu Yongbao, Xue Lei, et al. A new intermittent control approach to practical fixed-time consensus with input delay[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(6): 2186-2190.

[19] Wang Qipeng, Wang Xiangke, Zheng Jiayi, et al. Fixed-time consensus based on a fractional adaptive gain for multi-agent systems[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 2479-2488.

[20] Cui Qian, Song Yongduan, Wen Changyun. Prescribed time consensus control of multiagent systems with minimized time-varying cost function[J]. IEEE Transa- ctions on Automatic Control, 2024, 69(5): 3381-3388.

[21] Ning Boda, Han Qinglong, Zuo Zongyu, et al. Fixed-time and prescribed-time consensus control of multiagent systems and its applications: a survey of recent trends and methodologies[J]. IEEE Transa- ctions on Industrial Informatics, 2023, 19(2): 1121- 1135.

Fixed-Time Optimized Consensus Speed Control of Multiple Permanent Magnet Synchronous Motors Based on Multi-Agent Systems

Hou Limin Li Zhenglong Zhao Shijie Lan Xiaoru

(Faculty of Electrical and Control Engineering Liaoning Technical University Huludao 125105 China)

Abstract With the advancement of modern industrial automation, the collaborative control of multiple permanent magnet synchronous motors (multi-PMSMs) has become a research focus. To enhance the synchronization performance and tracking accuracy of multi-PMSMs collaborative control systems, this paper proposes a fixed-time optimized consensus speed control method based on multi-agent systems (MAS).

Multi-agent consensus control has scalability and reasoning ability as a distributed control approach. This paper applies multi-agent consensus theory to the collaborative control of multi-PMSMs, considering the system as a multi-agent system. Graph theory describes the information exchange relationships among the motors, and a fixed-time distributed state observer is designed based on local information to estimate the state of a virtual leader, ensuring that each motor obtains the local objective function gradient accurately. A fixed-time optimized speed consensus protocol is designed, from which the desired q-axis current is derived to ensure that the speed of each motor reaches consensus and converges to the optimized trajectory. A fixed-time extended state observer is then employed to estimate system disturbances, and the estimated disturbance value is compensated in the consensus protocol to enhance disturbance rejection. Lyapunov functions demonstrate that the designed observer and consensus protocol can achieve convergence within a fixed time.

The proposed control method is validated on a three-motor speed control platform and compared with a relative coupling control method. Experimental results for both forward and reverse speed operations show that the proposed method achieves consensus motor speeds, and the designed fixed-time distributed state observer accurately tracks the virtual leader's state. During acceleration and deceleration, the proposed method demonstrates no overshoot, and the transition is smooth. In the steady state, the proposed method yields a speed fluctuation of only 0.5 r/min, compared to 2 r/min for relative coupling control. The tracking and synchronization errors are 1 r/min and 1.5 r/min, respectively, significantly lower than the 1.7 r/min and 2.2 r/min errors for relative coupling control. Furthermore, the proposed control method includes a fixed-time extended state observer to estimate and compensate disturbances, ensuring quick motor speed adjustments when the load changes, thus maintaining synchronization and tracking performance in the multi-PMSMs collaborative control system. In load variation experiments, when the loads of multiple motors change at the same time, the proposed method exhibits a speed fluctuation of 20 r/min and a q-axis current fluctuation of 0.31 A, which is significantly lower than the 80.3 r/min and 0.99 A fluctuations of relative coupling control. When load changes occur at different times for each motor, the other motors adjust accordingly, reducing synchronization errors in the system. The proposed method also responds well to asynchronous load variation, reducing system synchronization errors. Experimental results demonstrate that the proposed control method provides superior synchronization performance and robustness compared to traditional relative coupling control, with reduced overshoot during startup and smaller steady-state speed fluctuations.

The key conclusions of this paper can be summarized as follows. (1) This paper applies multi-agent consensus theory to model the coordinated control system of multi-PMSMs as a multi-agent system. A fixed-time distributed state observer is designed to estimate the state of a virtual leader, enabling the acquisition of the gradient information of each local function. (2) A fixed-time optimized speed consensus protocol is proposed, using a fixed-time extended state observer to estimate and compensate for system disturbances. This protocol directly obtains the desired q-axis current, enabling all motors to reach consensus and converge to the optimized trajectory within a fixed time. (3) The proposed method shows significant advantages over traditional approaches.

Keywords:Multiple permanent magnet synchronous motors, multi agent consensus, fixed-time optimization, speed collaborative control

中图分类号:TM351

DOI: 10.19595/j.cnki.1000-6753.tces.241479

国家自然科学基金资助项目(52177047)。

收稿日期 2024-08-21

改稿日期 2024-09-18

作者简介

侯利民 男,1976年生,教授,博士生导师,研究方向为电力电子与电气传动、先进控制理论与控制工程。

E-mail: hlm760410@163.com(通信作者)

李政龙 男,2000年生,硕士研究生,研究方向为永磁同步电机调速系统、多智能体系统一致性控制。

E-mail: 472220406@stu.lntu.edu.cn

(编辑 崔文静)