[1] 中华人民共和国国家发展和改革委员会. 《氢能产业发展中长期规划(2021-2035年)》[EB/OL]. [2022-03-23].https://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
[2] 程欢, 任洲洋, 孙志媛, 等. 电能-甲醇跨区协同输运下的电-氢耦合系统调度[J]. 电工技术学报, 2024, 39(3): 731-744.
Cheng Huan, Ren Zhouyang, Sun Zhiyuan, et al.A dispatching for the electricity-hydrogen coupling systems considering the coordinated inter-region transportation of electricity and methanol[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 731-744.
[3] 清华大学气候变化与可持续发展研究院. 《中国的氢能政策和技术现状及发展建议》 [EB/OL].[2023-11-27].https://lce.tsinghua.edu.cn/info/1042/1457.htm.
[4] 潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化, 2020, 44(23): 1-10.
Pan Guangsheng, Gu Wei, Zhang Huiyan, et al.Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(23): 1-10.
[5] 郜捷, 宋洁, 王剑晓, 等. 支撑中国能源安全的电氢耦合系统形态与关键技术[J]. 电力系统自动化, 2023, 47(19): 1-15.
Gao Jie, Song Jie, Wang Jianxiao, et al.Form and key technologies of integrated electricity-hydrogen system supporting energy security in China[J]. Automation of Electric Power Systems, 2023, 47(19): 1-15.
[6] Zhong Zhiyao, Fang Jiakun, Hu Kewei, et al.Power-to-hydrogen by electrolysis in carbon neutrality: technology overview and future development[J]. CSEE Journal of Power and Energy Systems, 2023, 9(4): 1266-1283.
[7] 吴孟雪, 房方. 计及风光不确定性的电-热-氢综合能源系统分布鲁棒优化[J]. 电工技术学报, 2023, 38(13): 3473-3485.
Wu Mengxue, Fang Fang.Distributionally robust optimization of electricity-heat-hydrogen integrated energy system with wind and solar uncertainties[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3473-3485.
[8] 罗潇, 任洲洋, 温紫豪, 等. 考虑氢能系统热回收的电氢区域综合能源系统日前优化运行[J]. 电工技术学报, 2023, 38(23): 6359-6372.
Luo Xiao, Ren Zhouyang, Wen Zihao, et al.A day-ahead dispatching method of regional integrated electric-hydrogen energy systems considering the heat recycle of hydrogen systems[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6359-6372.
[9] Feng Chenjia, Shao Chengcheng, Xiao Yunpeng, et al.Day-ahead strategic operation of hydrogen energy service providers[J]. IEEE Transactions on Smart Grid, 2022, 13(5): 3493-3507.
[10] Hernández-Gómez Á, Ramirez V, Guilbert D.Investigation of PEM electrolyzer modeling: electrical domain, efficiency, and specific energy consumption[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14625-14639.
[11] 李志伟, 赵雨泽, 吴培, 等. 基于制氢设备精细建模的综合能源系统绿氢蓝氢协调低碳优化策略[J]. 电网技术, 2024, 48(6): 2317-2326.
Li Zhiwei, Zhao Yuze, Wu Pei, et al.Low-carbon dispatching strategy of integrated energy system with coordination of green hydrogen and blue hydrogen based on fine modeling of hydrogen production equipment[J]. Power System Technology, 2024, 48(6): 2317-2326.
[12] 胡俊杰, 童宇轩, 刘雪涛, 等. 计及精细化氢能利用的综合能源系统多时间尺度鲁棒优化策略[J]. 电工技术学报, 2024, 39(5): 1419-1435.
Hu Junjie, Tong Yuxuan, Liu Xuetao, et al.Multi-time-scale robust optimization strategy for integrated energy system considering the refinement of hydrogen energy use[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1419-1435.
[13] 李建林, 赵文鼎, 梁忠豪, 等. 基于混合电解槽制氢系统的功率分配技术[J]. 电力系统自动化, 2024, 48(13): 9-18.
Li Jianlin, Zhao Wending, Liang Zhonghao, et al.Power distribution technology based on hybrid-electrolyzer hydrogen production system[J]. Automation of Electric Power Systems, 2024, 48(13): 9-18.
[14] 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472.
Shen Xiaojun, Nie Congying, Lü Hong.Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472.
[15] Ding Hongbing, Dong Yuanyuan, Zhang Yu, et al.Energy efficiency assessment of hydrogen recirculation ejectors for proton exchange membrane fuel cell (PEMFC) system[J]. Applied Energy, 2023, 346: 121357.
[16] 中华人民共和国中央人民政府. 《2024—2025年节能降碳行动方案》[EB/OL].[2024-05-29]. https://www.gov.cn/zhengce/content/202405/content_6954322.htm.
[17] Hu Zhengbiao, He Dongfeng, Zhao Hongbo.Multi-objective optimization of energy distribution in steel enterprises considering both exergy efficiency and energy cost[J]. Energy, 2023, 263: 125623.
[18] Chen Jianrun, Chen Haoyong, Liang Zipeng, et al.An exergy analysis model for the optimal operation of integrated heat-and-electricity-based energy systems[J]. Protection and Control of Modern Power Systems, 2024, 9(1): 1-18.
[19] 何帅, 刘念, 盛超群, 等. 多能源枢纽联合运行的? 损最小化分布式优化调度[J]. 电力系统自动化, 2021, 45(9): 28-37.
He Shuai, Liu Nian, Sheng Chaoqun, et al.Distributed optimal scheduling for minimizing exergy loss based on joint operation of multiple energy hubs[J]. Automation of Electric Power Systems, 2021, 45(9): 28-37.
[20] 刘帅东, 韩松, 荣娜, 等. 计及火用效率的电-气-热综合能源系统多目标优化调度方法[J]. 电网技术, 2024, 48(7): 2715-2722.
Liu Shuaidong, Han Song, Rong Na, et al.A multi-objective optimal scheduling method for integrated electricity-gas-heat energy system taking into account the exergy efficiency of the integrated energy system[J]. Power System Technology, 2024, 48(7): 2715-2722.
[21] 亓海青, 韩巍, 张娜, 等. 基于能的品位概念的火用经济分析方法及其案例分析[J]. 中国电机工程学报, 2016, 36(12): 3223-3231.
Qi Haiqing, Han Wei, Zhang Na, et al.Exergoeconomic analysis methodology based on energy level and case study[J]. Proceedings of the CSEE, 2016, 36(12): 3223-3231.
[22] Fu Yidan, Cai Lei, Liu Chunming, et al.Thermodynamic and economic performance comparison of biomass gasification oxy-fuel combustion power plant in different gasifying atmospheres using advanced exergy and exergoeconomic approach[J]. Renewable Energy, 2024, 226: 120290.
[23] 杨俊兰, 高思雨, 李久东. CO2跨临界制冷循环系统? 经济分析[J]. 太阳能学报, 2020, 41(1): 60-65.
Yang Junlan, Gao Siyu, Li Jiudong.Exergoeconomic analysis of CO2 transcritical refrigeration cycle system[J]. Acta Energiae Solaris Sinica, 2020, 41(1): 60-65.
[24] Wang Xi, Henshaw P, Ting D S.Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)[J]. Applied Energy, 2021, 294: 116952.
[25] Yang Kun, He Yiyun, Du Na, et al.Exergy, exergoeconomic, and exergoenvironmental analyses of novel solar- and biomass-driven trigeneration system integrated with organic Rankine cycle[J]. Energy, 2024, 301: 131605.
[26] 韩子娇, 那广宇, 董鹤楠, 等. 考虑灵活性供需平衡的含电转氢综合能源系统鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51(6): 161-169.
Han Zijiao, Na Guangyu, Dong Henan, et al.Robust optimal operation of integrated energy system with P2H considering flexibility balance[J]. Power System Protection and Control, 2023, 51(6): 161-169.
[27] 王灿, 张雪菲, 凌凯, 等. 基于区间概率不确定集的微电网两阶段自适应鲁棒优化调度[J]. 中国电机工程学报, 2024, 44(5): 1750-1764.
Wang Can, Zhang Xuefei, Ling Kai, et al.Two-stage adaptive robust optimal scheduling based on the interval probability uncertainty set for microgrids[J]. Proceedings of the CSEE, 2024, 44(5): 1750-1764.
[28] 清华大学电机工程与应用电子技术系. 《构建新型电力系统的战略构想: 新能源为主、电网配送、电氢融合》[EB/OL]. [2021-07-10]. https://www.eea.tsinghua.edu.cn/info/1038/2092.htm
[29] 袁铁江, 万志, 王进君, 等. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1): 101-109.
Yuan Tiejiang, Wan Zhi, Wang Jinjun, et al.The day-ahead output plan of hydrogen production system considering the start-stop characteristics of electrolytic cell[J]. Electric Power, 2022, 55(1): 101-109.
[30] 张艺晨, 戈志华, 杨勇平, 等. 基于火用分析的热电联产能耗一致性评价方法[J]. 中国电机工程学报, 2024, 44(2): 642-651.
Zhang Yichen, Ge Zhihua, Yang Yongping, et al.Unified evaluation method of cogeneration energy consumption based on exergy analysis[J]. Proceedings of the CSEE, 2024, 44(2): 642-651.
[31] 国家市场监督管理总局, 国家标准化管理委员会. 能量系统分析技术导则: GB/T 14909—2021[S]. 北京: 中国标准出版社, 2021.
[32] 中华人民共和国国家发展和改革委员会. 《关于第三监管周期省级电网输配电价及有关事项的通知》[EB/OL].[2023-05-15]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202305/t20230515_1355747.html.
[33] 林雨眠, 熊厚博, 张笑演, 等. 计及新能源机会约束与虚拟储能的电-热系统分布式多目标优化调度[J]. 电工技术学报, 2024, 39(16): 5042-5059.
Lin Yumian, Xiong Houbo, Zhang Xiaoyan, et al.Distributed multi-objective optimal scheduling of integrated electric-heat system considering chance constraint of new energy and virtual storage[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5042-5059.
[34] Li Peng, Yang Ming, Wu Qiuwei.Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk[J]. IEEE Transactions on Sustainable Energy, 2021, 12(1): 58-69. |