|
|
The Effect of Inlet Flow Rate on the Transient Electrical-Optical-Thermal Characteristics and Conversion Performance of CO2 Decomposition in Gliding Arc Discharges |
Liu Yang1, Zhang Zixiao1, Zhao Xiangen2, Du Yaping2, He Junjia1 |
1. State Key Laboratory of Advanced Electromagnetic Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. Department of Building Environment and Energy Engineering The Hong Kong Polytechnic University Hong Kong 999077 China |
|
|
Abstract The rising concentration of carbon dioxide (CO2) is recognized as one of the most challenges in the 21st century. Non-equilibrium plasma can activate the reaction of CO2 decomposition at room temperature and pressure due to the abundant active particles. Gliding arc discharge (GAD), as a non-equilibrium plasma production method, has attracted the attention of researchers because of the high energy efficiency for CO2 decomposition. The inlet flow rate, as a key operational parameter, is directly related to the conversion performance of CO2 decomposition in GAD. However, current studies mainly focus on the CO2 conversion performance and lack the direct observation of the arc motion, optical, and thermal morphology. To address these issues, this paper aims to investigate the effect of inlet flow rate on the transient electrical-optical-thermal characteristics and conversion performance of CO2 decomposition in GAD by experiment. Firstly, an in-situ diagnostic platform for transient electrical-optical-thermal characteristics is built in this paper, in which the thermal characteristic is visualized by a high-speed Schlieren technology. Then, by using the diagnostic platform, this paper carries out the experiments of CO2 decomposition in gliding arc discharge under different inlet flow rates (1.5 L/min to 10 L/min). Typical gliding arc discharge results show that Schlieren images are an essential supplement to traditional mono-optical observation by revealing a high-temperature flow region composed of a high-temperature core and a high-temperature diffuse region. The effects of the inlet flow rate on the motion characteristic in GAD (i.e., the discharge period and the arc short-circuit event), the area of the plasma luminescence and the high-temperature gas flow regions, the input energy, and the CO2 conversion performance parameters are compared and analyzed. The experimental results show that the discharge period decreases with the increase of the inlet flow rate, and the tendency follows an exponential decay distribution approximately. The areas of the plasma luminescence and high-temperature gas flow regions are positively correlated with the inlet flow rate, indicating that the increase in the inlet flow rate facilitates the expansion of the active particle and the enhancement of the heat convective to improve CO2 conversion. Two types of arc short-circuit events are induced by excessive inlet flow (10 L/min). The gliding region of GAD and the heat convection are suppressed due to frequent short-circuit events, resulting in the deterioration of CO2 conversion. The following conclusions can be drawn: (1) the discharge period decreases with the increase of the inlet flow rate, and the tendency follows an exponential decay distribution approximately. (2) There are two types of arc short-circuit events in gliding arc discharge: one is formed between the arc columns by electrical breakdown, and the other is formed in the near-cathode region by thermal breakdown. (3) The plasma luminescence area and high-temperature gas flow area increase with the inlet flow rate in a limited range, and reduce at excessive flow rates due to frequent arc short-circuit events. (4) The role of the inlet flow rate on CO2 conversion is mainly determined by the combined effect of gas residence time, active particle concentration and spatial distribution, heat convection, and short-circuit events.
|
Received: 08 November 2023
|
|
|
|
|
[1] 王振, 彭峰. 全球碳中和战略研究[M]. 上海: 上海社会科学院出版社, 2022. [2] 江泽民. 对中国能源问题的思考[J]. 上海交通大学学报, 2008, 42(3): 345-359. Jiang Zemin.Reflections on energy issues in China[J]. Journal of Shanghai Jiao Tong University, 2008, 42(3): 345-359. [3] 崔荣国, 郭娟, 程立海, 等. 全球清洁能源发展现状与趋势分析[J]. 地球学报, 2021, 42(2): 179-186. Cui Rongguo, Guo Juan, Cheng Lihai, et al.Status and trends analysis of global clean energies[J]. Acta Geoscientica Sinica, 2021, 42(2): 179-186. [4] 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3125. Xin Baoan, Shan Baoguo, Li Qionghui, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3125. [5] 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4): 423-434. Yu Guirui, Hao Tianxiang, Zhu Jianxing.Discussion on action strategies of China’s carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 423-434. [6] Jones J P, Surya Prakash G K, Olah G A. Electrochemical CO2 reduction: recent advances and current trends[J]. Israel Journal of Chemistry, 2014, 54(10): 1451-1466. [7] 赵鸣鸣, 于维鑫, 孔飞, 等. 基于二元布气的大气压等离子体沉积TiO2功能层提高陶瓷表面绝缘性能[J]. 电工技术学报, 2022, 37(13): 3404-3412. Zhao Mingming, Yu Weixin, Kong Fei, et al.Improvement of surface insulating properties of ceramics by deposition of TiO2 functional layer by atmospheric pressure plasma with binary gas distribution[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3404-3412. [8] 鲁娜, 张楚珂, 夏芸, 等. 等离子体转化CO2的研究进展[J]. 高电压技术, 2020, 46(1): 351-361. Lu Na, Zhang Chuke, Xia Yun, et al.Advances in plasma technology for CO2 conversion research[J]. High Voltage Engineering, 2020, 46(1): 351-361. [9] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [10] Snoeckx R, Bogaerts A.Plasma technology-a novel solution for CO2 conversion?[J]. Chemical Society Reviews, 2017, 46(19): 5805-5863. [11] 孙闵杰, 付军辉, 刘泓麟, 等. 分段电极介质阻挡放电CO2重整CH4过程放电特性与反应性能研究[J]. 电工技术学报, 2023, 38(15): 3972-3983. Sun Minjie, Fu Junhui, Liu Honglin, et al.Discharge characteristics and reaction performance of CH4 reforming with CO2 in dielectric barrier discharge with segmented electrodes[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 3972-3983. [12] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358, 1425. Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358, 1425. [13] 王晨旭, 吴锡鹏, 刘孝平, 等. 射频碳氟等离子提升环氧树脂沿面耐电性能的研究[J]. 高压电器, 2023, 59(9): 133-141. Wang Chenxu, Wu Xipeng, Liu Xiaoping, et al.Study on ehancment of surface electric resistance of epoxy resin by radio frequency fluorocarbon plasma[J]. High Voltage Apparatus, 2023, 59(9): 133-141. [14] Bogaerts A, Neyts E C.Plasma technology: an emerging technology for energy storage[J]. ACS Energy Letters, 2018, 3(4): 1013-1027. [15] 黑雪婷, 高远, 窦立广, 等. 纳秒脉冲介质阻挡放电等离子体驱动CH4-CH3OH转化制备液态化学品的特性研究[J]. 电工技术学报, 2022, 37(15): 3941-3950. Hei Xueting, Gao Yuan, Dou Liguang, et al.Study on plasma enhanced CH4-CH3OH conversion to liquid chemicals by nanosecond pulsed dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3941-3950. [16] 卢洪伟, 金东翰, 查学军. 垂直磁场对DBD降解亚甲基蓝模拟废水的影响[J]. 高压电器, 2023, 59(2): 140-146. Lu Hongwei, Jin Donghan, Zha Xuejun.Effect of vertical magnetic field on degradation of methylene blue wastewater by DBD plasma[J]. High Voltage Apparatus, 2023, 59(2): 140-146. [17] Fridman A A.Plasma Chemistry[M]. Cambridge: Cambridge University Press, 2008. [18] Liu Jinglin, Wang Xue, Li Xiaosong, et al.CO2 conversion, utilisation and valorisation in gliding arc plasma reactors[J]. Journal of Physics D Applied Physics, 2020, 53(25): 253001. [19] Zhang Hao, Li Li, Li Xiaodong, et al.Warm plasma activation of CO2 in a rotating gliding arc discharge reactor[J]. Journal of CO2 Utilization, 2018, 27: 472-479. [20] 杨国清, 邵朱夏, 曹一崧, 等. NaOH气液两相滑动弧放电处理含硫废气的研究[J]. 电工技术学报, 2017, 32(8): 114-120, 137. Yang Guoqing, Shao Zhuxia, Cao Yisong, et al.Treatment of flue gas containing sulfur by gas-liquid phase gliding arc discharge combined with NaOH[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 114-120, 137. [21] Indarto A, Yang D R, Choi J W, et al.Gliding arc plasma processing of CO2 conversion[J]. Journal of Hazardous Materials, 2007, 146(1/2): 309-315. [22] Ramakers M, Trenchev G, Heijkers S, et al.Gliding arc plasmatron: providing an alternative method for carbon dioxide conversion[J]. ChemSusChem, 2017, 10(12): 2642-2652. [23] Pietanza L D, Guaitella O, Aquilanti V, et al.Advances in non-equilibrium CO2 plasma kinetics: a theoretical and experimental review[J]. The European Physical Journal D, 2021, 75(9): 237. [24] 陈慧敏, 段戈辉, 梅丹华, 等. 气体添加对水电极同轴介质阻挡放电直接分解CO2的影响[J]. 电工技术学报, 2023, 38(1): 270-279, 284. Chen Huimin, Duan Gehui, Mei Danhua, et al.Effect of gas addition on CO2 decomposition in a coaxial dielectric barrier discharge reactor with water electrode[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 270-279, 284. [25] Sun S R, Kolev S, Wang H X, et al.Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics[J]. Plasma Sources Science and Technology, 2016, 26(1): 015003. [26] Wang Weizong, Mei Danhua, Tu Xin, et al.Gliding arc plasma for CO2 conversion: better insights by a combined experimental and modelling approach[J]. Chemical Engineering Journal, 2017, 330: 11-25. [27] Sun Hao, Chen Zhuolei, Chen Jiefu, et al.The influence of back-breakdown on the CO2 conversion in gliding arc plasma: based on experiments of different materials and improved structures[J]. Journal of Physics D Applied Physics, 2021, 54(49): 495203. [28] Gangoli S P, Gutsol A F, Fridman A A.A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: II. Electrical characterization[J]. Plasma Sources Science Technology, 2010, 19(6): 065004. [29] Zhao Tianliang, Xu Yong, Song Yuanhong, et al.Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra[J]. Journal of Physics D Applied Physics, 2013, 46(34): 345201. [30] Kozák T, Bogaerts A.Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model[J]. Plasma Sources Science and Technology, 2014, 23(4): 045004. [31] 杨锐, 游滨川, 刘潇, 等. 滑动弧裂解CO2机理[J]. 气体物理, 2022, 7(1): 53-62. Yang Rui, You Binchuan, Liu Xiao, et al.Mechanism of CO2 cracking by gliding arc[J]. Physics of Gases, 2022, 7(1): 53-62. [32] Trenchev G, Kolev S, Wang W, et al.CO2 conversion in a gliding arc plasmatron: multidimensional modeling for improved efficiency[J]. The Journal of Physical Chemistry C, 2017, 121(44): 24470-24479. [33] Trenchev G, Kolev S, Bogaerts A.A 3D model of a reverse vortex flow gliding arc reactor[J]. Plasma Sources Science Technology, 2016, 25(3): 035014. [34] 刘晓鹏, 董曼玲, 邓虎威, 等. 空气间隙击穿后放电通道内的气体运动特性[J]. 电工技术学报, 2021, 36(13): 2667-2674. Liu Xiaopeng, Dong Manling, Deng Huwei, et al.Movement characteristics of the gas in discharge channel after air gap breakdown[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2667-2674. [35] Traldi E, Boselli M, Simoncelli E, et al.Schlieren imaging: a powerful tool for atmospheric plasma diagnostic[J]. EPJ Techniques and Instrumentation, 2018, 5(1): 4. [36] Liu Yang, Wang Xiankang, Zhao Xiangen, et al.Observation of a narrow thermal channel connected to the anode during dark periods in long positive Sparks[J]. Applied Physics Express, 2023, 16(4): 046002. [37] Mutaf-Yardimci O, Saveliev A V, Fridman A A, et al.Thermal and nonthermal regimes of gliding arc discharge in air flow[J]. Journal of Applied Physics, 2000, 87(4): 1632-1641. [38] 付思, 陈文清, 曹云东. 小电流下弧根运动对空气直流电弧的影响[J]. 高压电器, 2023, 59(11): 224-230. Fu Si, Chen Wenqing, Cao Yundong.Influence of arc root motion on air DC arc under small current[J]. High Voltage Apparatus, 2023, 59(11): 224-230. |
|
|
|