|
|
Interval Estimation and Tracking Method for Transmission Line Parameters Based on QR-BiGRU Neural Network and Interval Robust Augmented State Estimation |
Zhang Xu1, Yan Wei1, Li Hui2, Lu Zhengmei1, Su Xin1 |
1. School of Electrical Engineering Chongqing University Chongqing 400044 China; 2. State Key Laboratory of Internet of Things for Smart City University of Macau Macau 999078 China |
|
|
Abstract To meet the needs of power systems for parameter estimation and tracking maintenance of transmission lines, this paper proposes an intervals estimation and tracking method for transmission line parameters based on quantile regression bidirectional gated recurrent unit (QR-BiGRU) neural network and interval robust augmented state estimation (IRASE). The proposed method is based on a dynamic augmented state estimation model in parameter tracking. Compared with static parameter estimation methods, the proposed method does not need to set up nonlinear measurement equations by multiple measurement scans to improve data redundancy, and has the advantages of easy modeling, high estimation efficiency, and better tracking maintenance; Compared with other parameter tracking methods, the proposed method does not require idealized configuration of branch measurements and only requires the system to be observable to realize the estimation, so it is more practical. The proposed method is based on interval estimation theory. Compared to point estimation, interval estimation can reflect the credibility of estimation values and the possible range of estimation errors and is considered a more secure and reliable estimation method. In addition, the estimated interval of the transmission line parameter can provide boundary information for bad data identification and provide a foundation for interval state estimation considering parameter interval. The contributions of this paper are as follows: 1) Propose an interval estimation and tracking method for transmission line parameters. The proposed method is based on the interval estimation theory and the improvement of the dynamic augmented state estimation model, including: (1) Interval estimation modeling based on measured values and their maximum allowable errors, predicted values and their prediction errors, etc. (2) Interval prediction based on QR-BiGRU neural network. (3) The improvement of robustness based on zero injection power constraints. The proposed method achieves more accurate and robust interval estimation and tracking maintenance for line parameters. 2) Proposed an interval prediction method based on the QR-BiGRU neural network. The proposed method considers the bidirectional features of historical estimated state time series data, achieving more accurate prediction. In addition, the least squares objective function of quantile regression is used as the loss function of the QR-BiGRU neural network, thereby achieving the interval prediction of the state at the next moment. 3) Propose an IRASE solution method based on interval analysis and error propagation theory. The proposed method is based on the law of error propagation and calculates the propagation values of state prediction error and redundant measurement error on parameter estimation error, thereby obtaining the parameter intervals caused by the state prediction interval and measurement interval. Finally, the multiple IEEE cases that integrated time series data from independent system operators in New York, USA, validated the following conclusions: 1) Compared with quantile regression long short term memory neural networks and quantile regression gated recurrent unit neural networks, the QR-BiGRU neural network has better interval prediction performance and accepTab.prediction rates. 2) Interval prediction based on the QR-BiGRU neural network can replace Holt exponential smoothing prediction function for parameter tracking, obtaining more accurate state prediction values and reliable state prediction intervals. 3) Zero injection power constraint could improve the robustness of the model and obtain more accurate parameter estimation results. 4) A relatively reasonable parameter estimated interval indicates the feasibility of the proposed IRASE solution method based on interval analysis and error propagation theory. 5) Compared to static augmented state estimation based on multiple measurement scans, the method proposed in this paper has higher computational efficiency and can effectively achieve long-term tracking and maintenance of transmission line parameters.
|
Received: 13 November 2023
|
|
|
|
|
[1] 于尔铿. 电力系统状态估计[M]. 北京: 水利电力出版社, 1985. [2] 薛安成, 张兆阳, 张建民, 等. 基于最大测点正常率的线路参数增广状态估计方法[J]. 电力系统自动化, 2014, 38(10): 61-65. Xue Ancheng, Zhang Zhaoyang, Zhang Jianmin, et al.An augmented state estimation method for transmission line parameters based on maximum normal measurement rate[J]. Automation of Electric Power Systems, 2014, 38(10): 61-65. [3] 何桦, 柴京慧, 卫志农, 等. 基于量测残差的改进参数估计方法[J]. 电力系统自动化, 2007, 31(4): 33-36, 96. He Hua, Chai Jinghui, Wei Zhinong, et al.Improved method of parameter estimation based on measurement residuals[J]. Automation of Electric Power Systems, 2007, 31(4): 33-36, 96. [4] Zhu Jun, Abur A.Identification of network parameter errors[J]. IEEE Transactions on Power Systems, 2006, 21(2): 586-592. [5] Lin Yuzhang, Abur A.Enhancing network parameter error detection and correction via multiple measurement scans[J]. IEEE Transactions on Power Systems, 2017, 32(3): 2417-2425. [6] 李钦, 项凤雏, 颜伟, 等. 基于SCADA及PMU多时段量测信息的独立线路参数估计方法[J]. 电网技术, 2011, 35(2): 105-109. Li Qin, Xiang Fengchu, Yan Wei, et al.An approach to estimate parameters of single transmission line based on multi-interval information measured by SCADA and phasor measurement units[J]. Power System Technology, 2011, 35(2): 105-109. [7] 薛安成, 张兆阳, 毕天姝. 基于自适应抗差最小二乘的线路正序参数在线辨识方法[J]. 电工技术学报, 2015, 30(8): 202-209. Xue Ancheng, Zhang Zhaoyang, Bi Tianshu.Online identification of transmission line positive-sequence parameters based on adaptive robust least squares[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 202-209. [8] 刘安迪, 李妍, 谢伟, 等. 基于多源数据多时间断面的配电网线路参数估计方法[J]. 电力系统自动化, 2021, 45(2): 46-54. Liu Andi, Li Yan, Xie Wei, et al.Estimation method of line parameters in distribution network based on multi-source data and multi-time sections[J]. Automation of Electric Power Systems, 2021, 45(2): 46-54. [9] Bian Xiaomeng, Li X R, Chen Huimin, et al.Joint estimation of state and parameter with synchrophasors: part II: parameter tracking[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1209-1220. [10] Ren Pengxiang, Lev-Ari H, Abur A.Tracking three-phase untransposed transmission line parameters using synchronized measurements[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4155-4163. [11] Pereira R F R, de Albuquerque F P, Liboni L H B, et al. Impedance parameters estimation of transmission lines by an extended Kalman filter-based algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 9003610. [12] Lin Junjie, Song Jie, Lu Chao.Synchrophasor data analytics: transmission line parameters online estimation for energy management[J]. IEEE Transactions on Engineering Management, 2022, 69(3): 671-681. [13] Wang Yubin, Xia Mingchao, Yang Qiang, et al.Augmented state estimation of line parameters in active power distribution systems with phasor measurement units[J]. IEEE Transactions on Power Delivery, 2022, 37(5): 3835-3845. [14] 王玉彬, 夏明超, 李鹏, 等. 基于改进鲁棒自适应UKF的配电网动态状态估计方法[J]. 电力系统自动化, 2020, 44(1): 92-100. Wang Yubin, Xia Mingchao, Li Peng, et al.Dynamic state estimation method of distribution network based on improved robust adaptive unscented Kalman filter[J]. Automation of Electric Power Systems, 2020, 44(1): 92-100. [15] 刘雨佳, 樊艳芳, 白雪岩, 等. 基于特征交叉机制和误差补偿的风力发电功率短期预测[J]. 电工技术学报, 2023, 38(12): 3277-3288. Liu Yujia, Fan Yanfang, Bai Xueyan, et al.Short-term wind power prediction based on feature crossover mechanism and error compensation[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3277-3288. [16] Wang Ruoheng, Li Chaoshun, Fu Wenlong, et al.Deep learning method based on gated recurrent unit and variational mode decomposition for short-term wind power interval prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 3814-3827. [17] 高树国, 汲胜昌, 孟令明, 等. 基于在线监测系统与声振特征预测模型的高压并联电抗器运行状态评估方法[J]. 电工技术学报, 2022, 37(9): 2179-2189. Gao Shuguo, Ji Shengchang, Meng Lingming, et al.Operation state evaluation method of high-voltage shunt reactor based on on-line monitoring system and vibro-acoustic characteristic prediction model[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2179-2189. [18] 张铄, 吴丽珍. 计及坏数据辨识与修正的配电网状态估计[J]. 电气技术, 2022, 23(11): 1-5, 12. Zhang Shuo, Wu Lizhen.Distribution network state estimation considering bad data identification and correction[J]. Electrical Engineering, 2022, 23(11): 1-5, 12. [19] Rakpenthai C, Uatrongjit S, Premrudeepreechacharn S.State estimation of power system considering network parameter uncertainty based on parametric interval linear systems[J]. IEEE Transactions on Power Systems, 2012, 27(1): 305-313. [20] 卫志农, 颜全椿, 孙国强, 等. 考虑参数不确定性的电力系统区间线性状态估计[J]. 电网技术, 2015, 39(10): 2862-2868. Wei Zhinong, Yan Quanchun, Sun Guoqiang, et al.Power system interval linear state estimation considering network parameter uncertainty[J]. Power System Technology, 2015, 39(10): 2862-2868. [21] 邵振国, 林洪洲, 陈飞雄, 等. 采用区间动态状态估计的局部不可观系统谐波源定位[J]. 电工技术学报, 2023, 38(9): 2391-2402. Shao Zhenguo, Lin Hongzhou, Chen Feixiong, et al.Harmonic source location in the partial unobservable system based on interval dynamic state estimation[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2391-2402. [22] Lin W M, Teng J H.State estimation for distribution systems with zero-injection constraints[J]. IEEE Transactions on Power Systems, 1996, 11(1): 518-524. [23] 朱茂林, 刘灏, 毕天姝. 考虑风电场量测相关性的双馈风力发电机鲁棒动态状态估计[J]. 电工技术学报, 2023, 38(3): 726-740. Zhu Maolin, Liu Hao, Bi Tianshu.Robust dynamic state estimation of doubly-fed induction generator considering measurement correlation in wind farms[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 726-740. [24] Moore R E, Bierbaum F.Methods and Applications of Interval Analysis[M]. Philadelphia: Siam, 1979. [25] 国家发展和改革委员会. 电力调度自动化系统运行管理规程: DL/T 516—2006[S]. 北京: 中国电力出版社, 2007. [26] 李丹, 任洲洋, 颜伟, 等. 基于因子分析和神经网络分位数回归的月度风电功率曲线概率预测[J]. 中国电机工程学报, 2017, 37(18): 5238-5247, 5522. Li Dan, Ren Zhouyang, Yan Wei, et al.Month-ahead wind power curve probabilistic prediction based on factor analysis and quantile regression neural network[J]. Proceedings of the CSEE, 2017, 37(18): 5238-5247, 5522. [27] Gu Chaojun, Jirutitijaroen P, Motani M.Detecting false data injection attacks in AC state estimation[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2476-2483. [28] Teng W L J. State estimation for distribution systems with zero-injection constraints[J]. IEEE Transactions on Power Systems, 1996, 11(1): 518-524. |
|
|
|