|
|
Modeling and Parameter Identification of Converter Transformer for High-Frequency Resonance Problem of Flexible DC Converter Station |
Hu Yinghong1, Li Yu1, Li Yang2, Chen Jikai2, Zhang Yang3 |
1. Electric Power Research Institute of State Grid Jibei ElectricPower Co. Ltd Beijing 100045 China; 2. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 3. School of Electrical Engineering Nanchang Institute of Technology Nanchang 330099 China |
|
|
Abstract In December 2020, a high-frequency resonance of around 3 200 Hz occurred during the no-load starting process of Kangbao station, triggering high-frequency component protection, which resulted in the converter station blockage and system trip. When the resonance occurred, the converter station charged the converter transformer. However, the bus was not connected to any AC overhead line, which means that the converter transformer participated in the high-frequency resonance of a modular multilevel converter (MMC) with the no-load bus. The modeling method that the converter transformer is equivalent to the leakage reactance can not reflect the high-frequency characteristics of the converter transformer, failing to analyze this high-frequency resonance accurately. For the high-frequency resonance problem in Zhangbei Kangbao MMC with the no-load bus, the research focuses on the physical characteristics of the converter transformer and the modeling method in the high-frequency range. Firstly, the high-frequency equivalent model is established considering the interturn capacitance, the coupling capacitance, and the capacitance to ground. The high-frequency model of the converter transformer is simplified by neglecting the capacitance to ground. Then, based on the measured frequency response data of the Kangbao converter transformer, the improved Powell algorithm is used to calculate the high-frequency equivalent model parameters. The critical parameters are checked, and the application scope of the model is determined. Moreover, the effects of equivalent capacitance parameters on the high-frequency impedance of the converter transformer are analyzed. Finally, based on the high-frequency equivalent model, the high-frequency resonance phenomenon is reproduced in Kangbao MMC with the no-load bus. The simulation results verify the accuracy of the equivalent model. Different from the power frequency model, interturn and coupling capacitances should be considered in converter transformer modeling at the high-frequency band. The capacitance effect makes the equivalent impedance characteristics of the converter transformer appear capacitive in the frequency band of 1~5 kHz. Compared with the measured frequency response data of the Kangbao converter transformer, the proposed method can easily obtain accurate high-frequency model parameters within 5 kHz, such as the interturn capacitance, the coupling capacitance, and the leakage induction. The simplified high-frequency model of the converter transformer meets the accuracy requirements of the high-frequency resonance analysis of MMC with the no-load bus. The grid side winding's interturn capacitance of the converter transformer has the most obvious influence on its high-frequency impedance, and the high-frequency resonance frequency of MMC with the no-load bus decreases with the increase of its capacity. During the no-load starting process, the high-frequency characteristic of the converter transformer is an essential factor in determining whether the high-frequency resonance risk exists at a converter station. If the high-frequency characteristic of the converter transformer is addressed, the high-frequency resonance problem of MMC with the no-load bus can be accurately analyzed.
|
Received: 10 October 2023
|
|
|
|
|
[1] 饶宏, 黄伟煌, 郭知非, 等. 柔性直流输电技术在大电网中的应用与实践[J]. 高电压技术, 2022, 48(9): 3347-3355. Rao Hong, Huang Weihuang, Guo Zhifei, et al.Practical experience of VSC-HVDC transmission in large grid[J]. High Voltage Engineering, 2022, 48(9): 3347-3355. [2] 邵冰冰, 赵峥, 肖琪, 等. 多直驱风机经柔直并网系统相近次同步振荡模式参与因子的弱鲁棒性分析[J]. 电工技术学报, 2023, 38(3): 754-769. Shao Bingbing, Zhao Zheng, Xiao Qi, et al.Weak robustness analysis of close subsynchronous oscillation modes' participation factors in multiple direct-drive wind turbines with the VSC-HVDC system[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 754-769. [3] 汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3-14. Tang Guangfu, He Zhiyuan, Pang Hui.Research, application and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3-14. [4] 马富艺龙, 辛焕海, 刘晨曦, 等. 新能源基地柔性直流送出系统小扰动电压支撑强度评估[J]. 电工技术学报, 2023, 38(21): 5758-5770, 5938. Ma Fuyilong, Xin Huanhai, Liu Chenxi, et al.Small-disturbance system voltage support strength assessment method for renewables VSC-HVDC delivery system[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5758-5770, 5938. [5] Saad H, Fillion Y, Deschanvres S, et al.On resonances and harmonics in HVDC-MMC station connected to AC grid[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1565-1573. [6] 李岩, 邹常跃, 饶宏, 等. 柔性直流与极端交流系统间的谐波谐振[J]. 中国电机工程学报, 2018, 38(增刊1): 19-23. Li Yan, Zou Changyue, Rao Hong, et al.Resonance of VSC-HVDC with extreme AC grid[J]. Proceedings of the CSEE, 2018, 38(S1): 19-23. [7] 赵峥, 李明, 田园园, 等. 江苏如东海上风电柔直工程系统谐振分析与抑制[J]. 电力建设, 2023, 44(6): 144-152. Zhao Zheng, Li Ming, Tian Yuanyuan, et al.Resonance analysis and suppression in Jiangsu Rudong offshore wind power flexible DC system[J]. Electric Power Construction, 2023, 44(6): 144-152. [8] 苑宾, 厉璇, 尹聪琦, 等. 孤岛新能源场站接入柔性直流高频振荡机理及抑制策略[J]. 电力系统自动化, 2023, 47(4): 133-141. Yuan Bin, Li Xuan, Yin Congqi, et al.Mechanism and suppression strategy of high-frequency oscillation caused by integration of islanded renewable energy station into MMC-HVDC system[J]. Automation of Electric Power Systems, 2023, 47(4): 133-141. [9] 杜镇宇, 阳岳希, 季柯, 等. 张北柔直工程高频谐波振荡机理与抑制方法研究[J]. 电网技术, 2022, 46(8): 3066-3075. Du Zhenyu, Yang Yuexi, Ji Ke, et al.High frequency harmonic resonance and suppression in Zhangbei Project[J]. Power System Technology, 2022, 46(8): 3066-3075. [10] 郭春义, 彭意, 徐李清, 等. 考虑延时影响的MMC-HVDC系统高频振荡机理分析[J]. 电力系统自动化, 2020, 44(22): 119-126. Guo Chunyi, Peng Yi, Xu Liqing, et al.Analysis on high-frequency oscillation mechanism for MMC- HVDC system considering influence of time delay[J]. Automation of Electric Power Systems, 2020, 44(22): 119-126. [11] 李冠群, 叶华, 宾子君. V/f控制MMC带换流变压器空载充电发生高频振荡的机理分析[J]. 电力系统自动化, 2023, 47(11): 50-59. Li Guanqun, Ye Hua, Bin Zijun.High-frequency oscillation mechanism analysis of V/f controlled modular multilevel converter charging with converter transformer under no-load condition[J]. Automation of Electric Power Systems, 2023, 47(11): 50-59. [12] 刘普, 王跃, 雷万钧, 等. 模块化多电平变流器稳态运行特性分析[J]. 电工技术学报, 2015, 30(11): 90-99. Liu Pu, Wang Yue, Lei Wanjun, et al.Analysis of steady-state operating characteristics for modular multilevel converters[J]. Transactions of China Electrotechnical Society, 2015, 30(11): 90-99. [13] 李云丰, 贺之渊, 庞辉, 等. 柔性直流输电系统高频稳定性分析及抑制策略(一): 稳定性分析[J]. 中国电机工程学报, 2021, 41(17): 5842-5856. Li Yunfeng, He Zhiyuan, Pang Hui, et al.High frequency stability analysis and suppression strategy of MMC-HVDC systems (part I): stability analysis[J]. Proceedings of the CSEE, 2021, 41(17): 5842-5856. [14] 胡畔, 陈红坤, 陈孟忻, 等. 基于动态相量法的改进多端模块化多电平换流器HVDC小干扰稳定模型[J]. 电工技术学报, 2017, 32(24): 193-204. Hu Pan, Chen Hongkun, Chen Mengxin, et al.Advanced small-signal stability model for multi-terminal modular multilevel converter-HVDC systems based on dynamic phasors[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 193-204. [15] Lü Jing, Zhang Xin, Cai Xu, et al.Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2134-2148. [16] Zhang Yang, Chen Xin, Sun Jian.Sequence impedance modeling and analysis of MMC in single- star configuration[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 334-346. [17] 郭琦, 郭海平, 黄立滨. 电网电压前馈对柔性直流输电在弱电网下的稳定性影响[J]. 电力系统自动化, 2018, 42(14): 139-144. Guo Qi, Guo Haiping, Huang Libin.Effect of grid voltage feedforward on VSC-HVDC stability in weak power grid[J]. Automation of Electric Power Systems, 2018, 42(14): 139-144. [18] 杜东冶, 郭春义, 贾秀芳, 等. 基于附加带阻滤波器的模块化多电平换流器高频谐振抑制策略[J]. 电工技术学报, 2021, 36(7): 1516-1525. Du Dongye, Guo Chunyi, Jia Xiufang, et al.Suppression strategy for high frequency resonance of modular multilevel converter based on additional band-stop filter[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1516-1525. [19] 刘津铭, 陈燕东, 伍文华, 等. 孤岛微电网序阻抗建模与高频振荡抑制[J]. 电工技术学报, 2020, 35(7): 1538-1552. Liu Jinming, Chen Yandong, Wu Wenhua, et al.Sequence impedance modeling and high-frequency oscillation suppression method for island microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1538-1552. [20] 王一凡, 赵成勇, 郭春义. 双馈风电场孤岛经模块化多电平换流器直流输电并网系统小信号稳定性分析与振荡抑制方法[J]. 电工技术学报, 2019, 34(10): 2116-2129. Wang Yifan, Zhao Chengyong, Guo Chunyi.Small signal stability and oscillation suppression method for islanded double fed induction generator-based wind farm integrated by modular multilevel converter based HVDC system[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2116-2129. [21] Shen Wei, Wang Fei, Boroyevich D, et al.High-density nanocrystalline core transformer for high-power high-frequency resonant converter[J]. IEEE Transactions on Industry Applications, 2008, 44(1): 213-222. [22] 郝全睿, 徐政, 黄莹, 等. 用于高频干扰计算的HVDC换流变压器模型[J]. 电工技术学报, 2008, 23(8): 47-52. Hao Quanrui, Xu Zheng, Huang Ying, et al.Models of HVDC converter transformer for calculation of high- frequency interference[J]. Transactions of China Electrotechnical Society, 2008, 23(8): 47-52. [23] Liu Chen, Qi Lei, Cui Xiang, et al.Experimental extraction of parasitic capacitances for high-frequency transformers[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4157-4167. [24] 骆仁松, 汪涛, 文继峰, 等. 大功率高频变压器三维温升计算及优化设计方法[J]. 电工技术学报, 2023, 38(18): 4994-5005, 5016. Luo Rensong, Wang Tao, Wen Jifeng, et al.Three-dimensional temperature calculation and optimization design method for high power high- frequency transformer[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4994-5005, 5016. [25] Hashemnia N, Abu-Siada A, Islam S.Improved power transformer winding fault detection using FRA diagnostics-part 1: axial displacement simulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 556-563. [26] 张科科, 齐磊, 崔翔, 等. 多绕组中频变压器宽频建模方法[J]. 电网技术, 2019, 43(2): 582-590. Zhang Keke, Qi Lei, Cui Xiang, et al.Wideband modeling method of multi-winding medium frequency transformer[J]. Power System Technology, 2019, 43(2): 582-590. [27] 汪涛, 骆仁松, 文继峰, 等. 基于辅助绕组的高频变压器绕组损耗测量方法[J]. 电工技术学报, 2022, 37(10): 2622-2630, 2655. Wang Tao, Luo Rensong, Wen Jifeng, et al.A measurement method of winding loss for high-frequency transformer based on auxiliary winding[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2622-2630, 2655. [28] Mossad M I, Azab M, Abu-Siada A.Transformer parameters estimation from nameplate data using evolutionary programming techniques[J]. IEEE Transactions on Power Delivery, 2014, 29(5): 2118-2123. [29] Wu Qiong, Jazebi S, de Leon F. Parameter estimation of three-phase transformer models for low-frequency transient studies from terminal measurements[J]. IEEE Transactions on Magnetics, 2017, 53(7): 1-8. [30] Abu-Siada A, Hashemnia N, Islam S, et al.Understanding power transformer frequency response analysis signatures[J]. IEEE Electrical Insulation Magazine, 2013, 29(3): 48-56. [31] 李佳靖, 金荣洪, 耿军平. CDMA系统中一种快速有效的盲波束形成方法[J]. 西安电子科技大学学报(自然科学版), 2007, 34(6): 980-985. Li Jiajing, Jin Ronghong, Geng Junping.A fast and efficient bind beamforming method for CDMA systems[J]. Journal of Xidian University (Natural Science), 2007, 34(6): 980-985. [32] Abu-Siada A, Mosaad M I, Kim D, et al.Estimating power transformer high frequency model parameters using frequency response analysis[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1267-1277. [33] 杨玥坪, 树婷, 吴玖汕, 等. 变压器绕组局部放电量测量误差计算及其修正方法研究[J]. 西安交通大学学报, 2022, 56(10): 122-129. Yang Yueping, Shu Ting, Wu Jiushan, et al.Error analysis and correction of partial discharge quantity measurement of transformer windings[J]. Journal of Xi'an Jiaotong University, 2022, 56(10): 122-129. [34] 张旭东, 张重远, 陈涛, 等. 基于多导体传输线模型变压器宽频参数的计算[J]. 变压器, 2014, 51(8): 5-10. Zhang Xudong, Zhang Zhongyuan, Chen Tao, et al.Calculation of broadband admittance parameters for transformer based on MTL[J]. Transformer, 2014, 51(8): 5-10. [35] Hashemnia N, Abu-Siada A, Islam S.Detection of power transformer bushing faults and oil degradation using frequency response analysis[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2016, 23(1): 222-229. |
|
|
|