|
|
A Review on Cryogenic Permanent Magnet Synchronous Motor for Submersible Liquid Natural Gas Pump |
Zhang Shukuan1, Wang Fachen1, Qu Ronghai2, Zhu Jingwei1, Liu Guangwei3 |
1. College of Marine Electrical Engineering Dalian Maritime University Dalian 116026 China; 2. School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 3. Key Laboratory of Special Machine and High Voltage Apparatus Ministry of Education Shenyang University of Technology Shenyang 110870 China |
|
|
Abstract A new global energy structure with oil, coal, natural gas, and new energy has developed. Natural gas is mainly stored and transported as liquefied natural gas (LNG). The submersible LNG pump plays an important role in the transportation and use of LNG, and the cryogenic permanent magnet synchronous motor (CPMSM) is the core driving equipment of the submersible LNG pump. This paper summarizes the key technical issues involved in CPMSM and provides a reference for future research and application. Firstly, the electromagnetic and physical characteristics of core materials, permanent magnet materials, insulation materials, and bearings used in CPMSM are reviewed in detail, clarifying the principles for selecting different materials. The stator and rotor cores can be made of oriented silicon steel sheets with high silicon content or amorphous alloy material to ensure the efficient and stable operation of CPMSM. The permanent magnet should use samarium cobalt permanent magnet material; multi-layer composite insulation material should be used for winding insulation; bearings can be low-temperature hybrid bearings, low-temperature all-ceramic bearings, and magnetic bearings. Secondly, according to the changes in the service characteristics of CPMSM materials in a cryogenic environment, the design methods of CPMSM based on multi-physics coupling analysis and analogy method are introduced. Compared to the conventional PMSM, the stator and rotor diameters of CPMSM can be reduced by 14.3% and 10.0%, respectively. In addition, from the perspective of reducing the losses of CPMSM and ensuring the structural strength of the motor, the stator and rotor topology structures of CPMSM are analyzed. Thirdly, the research on multi-physical field coupling analysis of CPMSM in recent years is summarized, focusing on the fluid-thermal field coupling analysis and stress distribution law of CPMSM under a cryogenic environment. Based on the characteristics of LNG flowing through CPMSM's air gap, the effects of motor speed, LNG flow rate, and rotor surface roughness on rotor friction loss are analyzed. The advantages and drawbacks of three kinds of efficiency optimal control technology are discussed. Due to the difficulty in parameter measurement of CPMSM in cryogenic environments, the input power minimization strategy based on the search method has the advantage of independent motor parameters, which is suitable for CPMSM. Based on the investigation of the current CPMSM prototypes and commercial products, the manufacturing technique of CPMSM is summarized. The key parameters of CPMSM in a cryogenic environment, such as inductance, back EMF, shaft power, speed and torque, are difficult to measure directly. This paper introduces the existing testing methods of CPMSM for LNG pumps, analyzes its challenges and shortcomings, and discusses the solution of CPMSM testing technology in a cryogenic environment. Finally, this paper looks forward to developing trends for reducing the loss and temperature rise and improving efficiency and stability, including material service characteristics, optimization design methods, control strategies, testing methods, vibration and noise, and other high-efficiency cryogenic motors. Critical technical problems to be solved are also proposed, providing a reference for the research and development of CPMSM.
|
Received: 19 October 2023
|
|
|
|
|
[1] 杜蕙, 林涛, 李轻言, 等. 基于时空正交配置的电力-天然气互联系统最优校正控制方法[J]. 电工技术学报, 2023, 38(7): 1765-1779. Du Hui, Lin Tao, Li Qingyan, et al.Optimal corrective control method of electricity and natural gas interconnected systems based on space-time orthogonal collocation[J]. Transactions of China Electrotechnical Society, 2023, 38(7): 1765-1779. [2] 张国民, 陈建辉, 邱清泉, 等. 超导直流能源管道的研究进展[J]. 电工技术学报, 2021, 36(21): 4389-4398, 4428. Zhang Guomin, Chen Jianhui, Qiu Qingquan, et al.Research progress on the superconducting DC energy pipeline[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4389-4398, 4428. [3] 罗清局, 朱继忠. 基于改进交替方向乘子法的电-气综合能源系统优化调度[J]. 电工技术学报, 2024, 39(9): 2797-2809. Luo Qingju, Zhu Jizhong.Optimal dispatch of integrated electricity and gas system based on modified alternating direction method of multi- pliers[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2797-2809. [4] Guo Chao, Feng Yaojin, Huang Shoudao, et al.Operational performance analysis of the cryogenic electrical machine for submerged liquefied natural gas pumps[J]. Frontiers in Energy Research, 2022, 10: 922888. [5] Lü Xinyuan, Sun Dongyang, Sun Lizhi.Design and performance analysis of high-speed cryogenic permanent magnet synchronous motor[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019: 1-6. [6] Nikkiso. Accessed: January 04, 2024.[Online]. Available: https://www.nikkisoceig.com/product/. [7] 天津佰焰科技股份有限公司. Accessed: January 04, 2024.[Online]. Available: https://www.tjbaiyan.com/product_lngjqz.html/. [8] 湖南耐普泵业股份有限公司. Accessed: January 04, 2024.[Online]. Available: . Accessed: January 04, 2024.[Online]. Available: http://www.hnnep.com/product/5/. [9] Shinko. Accessed: January 04, 2024.[Online]. Available: . Accessed: January 04, 2024.[Online]. Available: http://www.shinkohir.co.jp/product.html/. [10] Elliott. Accessed: January 04, 2024.[Online]. Available: https://www.elliott-turbo.com/Products/. [11] Vanzetti. Accessed: January 04, 2024.[Online]. Available: https://www.vanzettiengineering.com/cn/cryogenic-pumps/. [12] 大连深蓝泵业有限公司. Accessed: January 04, 2024. [Online]. Available: https://www.deepbluepump.com/pro.php?classid=597/. [13] 艾程柳, 黄元峰, 王海峰, 等. 潜液式LNG泵低温电机及其关键技术发展综述[J]. 中国电机工程学报, 2014, 34(15): 2396-2405. Ai Chengliu, Huang Yuanfeng, Wang Haifeng, et al.Development of the cryogenic electrical motor for the submerged liquid natural gas pump and its key technologies[J]. Proceedings of the CSEE, 2014, 34(15): 2396-2405. [14] Dlugiewicz L, Kolowrotkiewicz J, Szelag W, et al.Permanent magnet synchronous motor to drive propellant pump[C]//International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 2012: 822-826. [15] Dlugiewicz L, Kolowrotkiewicz J, Szelag W, et al.Electrical motor for liquid gas pump[C]//International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Taormina, Italy, 2006: 311-316. [16] Pronto A G, Neves M V, Rodrigues A L.Measure- ment and separation of magnetic losses at room and cryogenic temperature for three types of steels used in HTS transformers[J]. Journal of Superconductivity and Novel Magnetism, 2011, 24(1): 981-985. [17] Liu Yingzhen, Noe M, Ou Jing, et al.Measurement of magnetic materials at room and cryogenic temperature for their application to superconducting wind genera- tors[J]. IEEE Transactions on Applied Supercondu- ctivity, 2018, 28(3): 5206006. [18] Breining P, Veigel M, Doppelbauer M, et al.Iron loss measurement of nonoriented silicon and cobalt iron electrical steel sheets at liquid nitrogen temperature using ring specimen[C]//2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 2017: 1-7. [19] Miyagi D, Otome D, Nakano M, et al.Measurement of magnetic properties of nonoriented electrical steel sheet at liquid nitrogen temperature using single sheet tester[J]. IEEE Transactions on Magnetics, 2010, 46(2): 314-317. [20] 杨志飞. 超低温环境下高速永磁电机铁心电磁特性与损耗研究[D]. 哈尔滨: 哈尔滨理工大学, 2022. Yang Zhifei.Study on core electromagnetic characte- ristics and loss of high speed permanent magnet motor in ultra-low temperature environment[D]. Harbin: Harbin University of Science and Technology, 2022. [21] 陈敏, 丘明, 肖立业, 等. 铁芯材料在低温下的磁性能的研究[J]. 电工电能新技术, 2003, 22(1): 35-38. Chen Min, Qiu Ming, Xiao Liye, et al.Study on magnetic characteristics of the ferromagnetic mate- rials at 77K[J]. Advanced Technology of Electrical Engineering and Energy, 2003, 22(1): 35-38. [22] Theisen E A.Recent advances and remaining challenges in manufacturing of amorphous and nanocrystalline alloys[J]. IEEE Transactions on Magnetics, 2022, 58(8): 2001207. [23] Cvetkovski G, Petkovska L.Performance improvement of PM synchronous motor by using soft magnetic composite material[J]. IEEE Transactions on Mag- netics, 2008, 44(11): 3812-3815. [24] 王韶鹏, 刘成成, 汪友华, 等. 软磁复合材料永磁电机的6σ 稳健多学科设计优化方法[J]. 电工技术学报, 2019, 34(4): 637-645. Wang Shaopeng, Liu Chengcheng, Wang Youhua, et al.6σ robust multidisciplinary design optimization method for permanent magnet motor σ with soft magnetic composite cores[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 637-645. [25] Chu Shuaijun, Liang Deliang, Jia Shaofeng, et al.Research and analysis on design characteristics of high-speed permanent magnet claw pole motor with soft magnetic composite cores for wide temperature range[J]. IEEE Transactions on Industry Applications, 2022, 58(6): 7201-7213. [26] Hadjipanayis G, Kim A.Temperature dependence of magnetic hysteresis in melt-spun and sintered Nd- Fe-B magnets[J]. IEEE Transactions on Magnetics, 1987, 23(5): 2533-2535. [27] 郭超, 黄守道, 王家堡, 等. 潜液式低温永磁同步电机的设计与特性研究[J]. 电工技术学报, 2019, 34(18): 3769-3777. Guo Chao, Huang Shoudao, Wang Jiabao, et al.Design and characteristic research of submerged cryogenic permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3769-3777. [28] Guo Chao, Huang Shoudao, Wang Jiabao, et al.Research of cryogenic permanent magnet syn- chronous motor for submerged liquefied natural gas pump[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 2030-2039. [29] 李安华, 董生智, 李卫. 稀土永磁材料的力学性能[J]. 金属功能材料, 2002, 9(4): 7-10. Li Anhua, Dong Shengzhi, Li Wei.Mechanical properties of RE permanent magnetic materials[J]. Metallic Functional Materials, 2002, 9(4): 7-10. [30] Kim H M, Lee K W, Kim D G, et al.Design of cryogenic induction motor submerged in liquefied natural gas[J]. IEEE Transactions on Magnetics, 2018, 54(3): 8201204. [31] 刘刚, 郝世缘, 朱章宸, 等. 基于动态模态分解-自适应变步长油浸式电力变压器绕组瞬态温升快速计算方法[J]. 电工技术学报, 2024, 39(12): 3895-3906. Liu Gang, Hao Shiyuan, Zhu Zhangchen, et al.Research on rapid calculation method of transient temperature rise of winding of dynamic mode decomposition-adaptive time stepping oil-immersed power transformer[J]. Transactions of China Electro- technical Society, 2024, 39(12): 3895-3906. [32] 艾程柳, 黄元峰, 王海峰, 等. 潜液式液化天然气泵用变频低温异步电机的关键参数设计[J]. 中国电机工程学报, 2015, 35(20): 5317-5326. Ai Chengliu, Huang Yuanfeng, Wang Haifeng, et al.Important parameters design of inverter-driven cryogenic induction motor for submerged liquid natural gas pump[J]. Proceedings of the CSEE, 2015, 35(20): 5317-5326. [33] 涂进, 艾程柳, 廖勇熙. 潜液式液化天然气泵用低温电机材料特性综述[J]. 微特电机, 2016, 44(1): 87-89. Tu Jin, Ai Chengliu, Liao Yongxi.Summary for material properties of cryogenic induction motor for submerged liquid natural gas pump[J]. Small & Special Electrical Machines, 2016, 44(1): 87-89. [34] Kajikawa K, Nakamura T.Proposal of a fully superconducting motor for liquid hydrogen pump with MgB2 wire[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1669-1673. [35] Messina G, Yazdani-Asrami M, Marignetti F, et al.Characterization of HTS coils for superconducting rotating electric machine applications: challenges, material selection, winding process, and testing[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(2): 5200310. [36] Shin H S, Diaz M A, Velasco M, et al.Performance evaluation of practical REBCO coated conductor tapes for superconducting wind power coils[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 8400405. [37] 余志强, 孙晓云, 邱清泉, 等. 电机外置式径向型高温超导飞轮储能系统样机悬浮测试及旋转实验[J]. 电工技术学报, 2019, 34(10): 2166-2175. Yu Zhiqiang, Sun Xiaoyun, Qiu Qingquan, et al.Levitation test and rotation experiment of radial-type superconducting flywheel energy storage system prototype with external motor[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2166-2175. [38] Bo Kai, Chen Junquan, Jiang Yapeng, et al.Electromagnetic characteristics analysis of high power superconducting synchronous motor[C]//2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC), Denver, CO, USA, 2022: 1-2. [39] 祝乘风, 厉彦忠, 谭宏博, 等. 热扰动冲击下的高温超导电缆失超恢复特性[J]. 电工技术学报, 2021, 36(18): 3884-3890. Zhu Chengfeng, Li Yanzhong, Tan Hongbo, et al.Numerical analysis on the quench and recovery of the high temperature superconducting cable subjected to thermal disturbance[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3884-3890. [40] Chen Wei, Zhang Haiyang, Chen Yong, et al.Impact of fatigue loading on the critical current of Bi-2223 tapes under background magnetic field[J]. Cryogenics, 2018, 94: 1-4. [41] Shively R, Miller H.Development of a submerged winding induction generator for cryogenic appli- cations[C]//Conference Record of the 2000 IEEE International Symposium on Electrical Insulation Anaheim, CA, USA, 2000: 243-246. [42] Shively R.Submerged cryogenic motor materials development[J]. IEEE Electrical Insulation Magazine, 2003, 19(3): 7-11. [43] Zheng Liping, Wu T X, Acharya D, et al.Design of a superhigh-speed cryogenic permanent magnet syn- chronous motor[J]. IEEE Transactions on Magnetics, 2005, 41(10): 3823-3825. [44] 张宇鹏. 低温潜液泵结构与应用研究[J]. 水泵技术, 2018(2): 1-5. Zhang Yupeng.Analysis of construction and application of the cryogenic submersible pump[J]. Pump Technology, 2018(2): 1-5. [45] 郭超. 潜液式深冷永磁同步电机的研究[D]. 长沙: 湖南大学, 2019. Guo Chao.Research of submerged cryogenic permanent magnet synchronous motor[D]. Changsha: Hunan University, 2019. [46] 安徽安盛特种电缆有限公司. Accessed: January 04, 2024.[Online]. Available: https://www.zsdianlan.com/dianxiandianlan/. [47] 郑州升龙电气有限公司. Accessed: January 04, 2024. [Online]. Available: . Accessed: January 04, 2024. [Online]. Available: http://zz-cable.com/products/. [48] 古乐, 王黎钦, 李秀娟, 等. 超低温氢氧泵轴承技术研究及进展[J]. 中国机械工程, 2002, 13(7): 620-623. Gu Le, Wang Liqin, Li Xiujuan, et al.Study and review of liquid hydrogen/oxygen turbo-pump cryogenic bearing technology[J]. China Mechanical Engineering, 2002, 13(7): 620-623. [49] Wang Bin, Guo Yanbao, Zhang Zheng, et al.Investigation of cryogenic friction and wear pro- perties of Invar 36 alloy against Si3N4 ceramic balls[J]. Wear, 2023, 518: 204648. [50] Xia Zhongxian, Wu Yuhou, Ma Tianbao, et al.Experimental study on adaptability of full ceramic ball bearings under extreme conditions of cryogenics and heavy loads[J]. Tribology International, 2022, 175: 107849. [51] Supreeth D K, Bekinal S I, Chandranna S R, et al.A review of superconducting magnetic bearings and their application[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(3): 3800215. [52] 罗浩杰, 刘江, 王斌, 等. 无速度主动磁悬浮轴承系统全频域不平衡控制[J]. 电机与控制学报, 2023, 27(9): 139-147. Luo Haojie, Liu Jiang, Wang Bin, et al.Unbalance control of speedless active magnetic bearing rotor system in full frequency domain[J]. Electric Machines and Control, 2023, 27(9): 139-147. [53] 李万杰, 张国民, 王新文, 等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报, 2020, 35(增刊1): 10-18. Li Wanjie, Zhang Guomin, Wang Xinwen, et al.Integration design of high-temperature super- conducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18. [54] Komori M, Kato H, Asami K, et al.Cryogenic motor with two radial AMBs in liquid nitrogen[J]. AIP Advances, 2021, 11(1): 015021. [55] 黄元峰, 艾程柳, 王海峰. 液化天然气潜液泵低温电机导液通道的优化设计[J]. 中国电机工程学报, 2015, 35(24): 6535-6542. Huang Yuanfeng, Ai Chengliu, Wang Haifeng.Optimization design of flow ducts in submerged liquefied natural gas pump cryogenic motor[J]. Proceedings of the CSEE, 2015, 35(24): 6535-6542. [56] Ai Chengliu, Huang Yuanfeng, Wang Haifeng, et al.Thermal analysis and optimization of the stator structure of a submerged cryogenic induction motor[C]// 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, 2014: 1-4. [57] Kołowrotkiewicz J, Barański M, Szelęg W, et al.FE analysis of induction motor working in cryogenic temperature[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2007, 26(4): 952-964. [58] Manolopoulos C D, Iacchetti M F, Smith A C, et al.Litz wire loss performance and optimization for cryogenic windings[J]. IET Electric Power Appli- cations, 2023, 17(4): 487-498. [59] 李玮, 汪泽润, 张凤阁. 基于FEM/Kriging近似模型结合进化算法的表贴式高速永磁电机转子强度优化[J]. 电工技术学报, 2023, 38(4): 936-944, 956. Li Wei, Wang Zerun, Zhang Fengge.Rotor strength optimization of surface mount high speed permanent magnet motor based on FEM/Kriging approximate model and evolutionary algorithm[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 936-944, 956. [60] Nguyen B N, Roh H S, Merkel D R, et al.A predictive modeling tool for damage analysis and design of hydrogen storage composite pressure vessels[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20573-20585. [61] Hohe J, Schober M, Fliegener S, et al.Effect of cryogenic environments on failure of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 212: 108850. [62] 徐垚智. LNG泵用低温高速永磁电机转子涡流损耗与强度研究[D]. 哈尔滨: 哈尔滨理工大学, 2021. Xu Yaozhi.Study on eddy current loss and strength of rotor of low temperature and high speed permanent magnet motor for LNG pump[D]. Harbin: Harbin University of Science and Technology, 2021. [63] 王必成. 超低温泵用高速永磁电机转子强度和模态分析[D]. 哈尔滨: 哈尔滨理工大学, 2021. Wang Bicheng.Strength and modal analysis of high-speed permanent magnet motor rotor for ultra- low temperature pump[D]. Harbin: Harbin University of Science and Technology, 2021. [64] Yamazaki K, Kumagai M.Torque analysis of interior permanent-magnet synchronous motors by con- sidering cross-magnetization: variation in torque components with permanent-magnet configurations[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3192-3201. [65] Wang K, Zhu Z Q, Ombach G, et al.Average torque improvement of interior permanent-magnet machine using third harmonic in rotor shape[J]. IEEE Transactions on Industrial Electronics, 2014, 61(9): 5047-5057. [66] 李世奇, 佟文明, 贾建国, 等. 考虑磁桥非线性的内置式永磁同步电机空载电磁性能通用解析模型[J]. 电工技术学报, 2023, 38(6): 1421-1432. Li Shiqi, Tong Wenming, Jia Jianguo, et al.General analytical model of no-load electromagnetic per- formance of interior permanent magnet synchronous motors considering nonlinearity of magnetic bridges[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1421-1432. [67] 张超, 朱建国, 佟文明, 等. 高速内置式永磁转子强度分析与设计[J]. 电机与控制学报, 2017, 21(12): 43-50. Zhang Chao, Zhu Jianguo, Tong Wenming, et al.Strength analysis and design of high speed interior permanent magnet rotor[J]. Electric Machines and Control, 2017, 21(12): 43-50. [68] 佟文明, 次元平. 高速内置式永磁电机转子机械强度研究[J]. 电机与控制学报, 2015, 19(11): 45-50. Tong Wenming, Ci Yuanping.Study on rotor mechanical strength of high speed interior permanent magnet motor[J]. Electric Machines and Control, 2015, 19(11): 45-50. [69] Barański M, Szeląg W.Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor working at cryogenic tem- perature[C]//IET 8th International Conference on Computation in Electromagnetics (CEM 2011), Wroclaw, 2011: 1-2. [70] 戈宝军, 温亚垒, 王立坤, 等. LNG泵用低温高速永磁电机转子摩擦损耗研究[J]. 电机与控制学报, 2021, 25(10): 31-38. Ge Baojun, Wen Yalei, Wang Likun, et al.Research on rotor friction loss of cryogenic high-speed permanent magnet motor for LNG pump[J]. Electric Machines and Control, 2021, 25(10): 31-38. [71] Ai Liwang, Zhang Guomin, Jing Liwei, et al.Behaviors of axial and radial electromagnetic force for cryogenic disk motor[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 874-882. [72] 董传友, 金鹏飞, 杨子豪, 等. 低温高速永磁电机转子屏蔽套的设计及强度分析[J]. 电机与控制学报, 2023, 27(7): 111-121. Dong Chuanyou, Jin Pengfei, Yang Zihao, et al.Design and strength analysis of rotor shielding sleeve of low temperature and high speed permanent magnet motor[J]. Electric Machines and Control, 2023, 27(7): 111-121. [73] Wang Baoqing, Chen Kun, Huang Cheng, et al.Research on operation optimization of LNG sub- merged pump system in LNG receiving terminals[J]. Energies, 2022, 15(9): 3299. [74] 金宁治, 周凯, Herbert Ho-Ching IU. 带有自适应参数辨识的IPMSM MTPA控制[J]. 电机与控制学报, 2020, 24(7): 90-101. Jin Ningzhi, Zhou Kai, Iu H H C. Model reference adaptive identification based MTPA control method for interior PM synchronous motor[J]. Electric Machines and Control, 2020, 24(7): 90-101. [75] 康劲松, 王硕. 基于Newton-Raphson搜索算法的永磁同步电机变电感参数最大转矩电流比控制方法[J]. 电工技术学报, 2019, 34(8): 1616-1625. Kang Jinsong, Wang Shuo.Newton-raphson-based searching method for variable-parameters inductance maximum torque per ampere control used for IPMSM[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1616-1625. [76] 赵子安, 王一帆, 李凤姣, 等. 考虑铁损的同步磁阻电机最小损耗控制策略[J]. 电机与控制学报, 2023, 27(11): 1-9. Zhao Zian, Wang Yifan, Li Fengjiao, et al.Minimum losses control strategy of synchronous reluctance motors considering iron losses[J]. Electric Machines and Control, 2023, 27(11): 1-9. [77] 邱建琪, 宋攀, 陈卓易, 等. 改进虚拟信号注入永磁同步电机MTPA控制[J]. 电机与控制学报, 2022, 26(9): 1-8. Qiu Jianqi, Song Pan, Chen Zhuoyi, et al.Improved virtual signal injection control for MTPA operation of permanent magnet synchronous motor[J]. Electric Machines and Control, 2022, 26(9): 1-8. [78] 肖利军. 极端环境交流永磁电机特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. Xiao Lijun.Study on characteristics of AC permanent magnet motor in extreme environment[D]. Harbin: Harbin Institute of Technology, 2021. [79] Kusko A, Galler D. Control means for minimization of losses in AC and DC motor drives[J]. IEEE Transactions on Industry Applications, 1983, IA- 19(4): 561-570. [80] Morimoto S, Tong Y, Takeda Y, et al.Loss minimization control of permanent magnet synchronous motor drives[J]. IEEE Transactions on Industrial Electronics, 1994, 41(5): 511-517. [81] Uddin M N, Rebeiro R S.Online efficiency optimization of a fuzzy-logic-controller-based IPMSM drive[J]. IEEE Transactions on Industry Applications, 2011, 47(2): 1043-1050. [82] Hofmann H F, Sanders S R, EL-Antably A.Stator-flux-oriented vector control of synchronous reluctance machines with maximized efficiency[J]. IEEE Transactions on Industrial Electronics, 2004, 51(5): 1066-1072. [83] 盛义发, 喻寿益, 桂卫华, 等. 轨道车辆用永磁同步电机系统效率优化智能集成控制研究[J]. 中南大学学报(自然科学版), 2010, 41(6): 2252-2257. Sheng Yifa, Yu Shouyi, Gui Weihua, et al.Efficiency optimization of permanent magnet synchronous motor for rail vehicles based on intelligent integrated control[J]. Journal of Central South University (Science and Technology), 2010, 41(6): 2252-2257. [84] Guo Chao, Wang Jiabao, Huang Shoudao, et al.Characteristic analysis of the cryogenic permanent magnet synchronous motor for the submerged LNG pump[C]//2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017: 1-4. [85] 艾程柳, 黄元峰, 王海峰, 等. 潜液式LNG泵用变频低温异步电机的运行性能研究[J]. 电工技术学报, 2015, 30(14): 138-145. Ai Chengliu, Huang Yuanfeng, Wang Haifeng, et al.Research on the operating performance of an inverter-driven cryogenic induction motor for a submerged LNG pump[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 138-145. [86] Guo Chao, Huang Shoudao, Wang Jiabao, et al.Design of cryogenic permanent magnet synchronous motor for submerged liquefied natural gas pump[J]. IEEE Transactions on Magnetics, 2018, 54(11): 8207405. [87] Ai Liwang, Zhang Guomin, Xu Xiaozhuo, et al.Analysis and testing of a superconducting maglev submersible cryogenic liquid pump[J]. IET Electric Power Applications, 2022, 16(4): 498-510. |
|
|
|